PART

기초수학

CHAPTER 01 수와 식

CHAPTER 02 방정식과 함수

CHAPTER 03 도형의 방정식과 부등식

CHAPTER 04 수열과 급수

수와 식

1 집합

1) 집합과 원소

- ① 집합 : 어떤 조건에 의하여 그 대상을 분명하게 알 수 있는 것들의 모임을 집합이라 한다.
- ② 원소 : 집합을 이루는 대상 하나 하나를 원소라 한다.
 - \bigcirc a 가 집합 A 의 원소일 때, a 는 A 에 속한다. \Leftrightarrow a \in A
 - \bigcirc a 가 집합 A 의 원소가 아닐 때. a는 A 에 속하지 않는다. \Leftrightarrow a $\not\in$ A

2) 집합의 표시법

- ① 벤 다이어그램 : 집합을 나타낸 그림을 말한다.
- ② 원소나열법: 집합에 속하는 모든 원소를 {}안에 일일이 나열하는 방법을 원소나열법이라 한다.
- ③ 조건제시법 : 집합의 원소들이 공통으로 가지는 특징을 $\{x \mid x \text{ 의 조건}\}$ 으로 나타내는 방법을 조건제시법이라 하다

3) 집합의 종류

- ① 유한집합 : 원소의 개수가 유한개인 집합을 유한집합이라 한다.
- ② 무한집합 : 원소가 무한히 많은 집합을 무한집합이라 한다.
- ③ 공집합 : 원소가 하나도 없는 집합 ⇔ ϕ 또는 {}을 공집합이라 한다.

A의 원소의 개수는 n(A)로 나타낸다.

4) 부분집합

- ① 부분집합 : 집합 A의 모든 원소가 집합 B의 원소일 때, A를 B의 부분집합이라 한다. 이 때, 기호 $A \subset B$ 로 나타내며, 집합 A가 집합 B의 부분집합이 아닐 때는 기호 $A \not\subset B$ 로 나타낸다.
- ② 부분집합의 개수 : 집합 $A = \{a_1, a_2, \dots, a_n\}$ 의 부분집합의 개수는 2^n 이다.

5) 집합의 연산

- ① A와 B의 합집합 : $A \cup B = \{x \mid x \in A \ \text{또는 } x \in B \}$
- ② A와 B의 교집합 : $A \cap B = \{x \mid x \in A \text{ old } x \in B\}$
- ③ A의 여집합 : $A^c = \{x \mid x \in U \cap \mathbb{Z}, x \not\in A\}$
- ④ A에 대한 B의 차집합 : $A-B=A\cap B^c=\{x\mid x\in A \text{ old } x\not\in B\}$
- ⑤ A의 멱집합 : 집합 A의 모든 부분집합을 원소로 하는 집합= $P(A) = \{x \mid x \subset A\}$

6) 유한집합의 원소 개수

유한집합 A의 원소의 개수를 n(A)로 나타내면, 다음과 같다.

- ① $n(A \cup B) = n(A) + n(B) n(A \cap B)$
- ② $n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(B \cap C) n(C \cap A) + n(A \cap B \cap C)$

- 1. 다음 중 집합이 아닌 것을 모두 고르면?
 - ⊙ 자연수 전체의 모임
 - ⓒ 나쁜 사람들의 모임 ② 머리 좋은 사람들의 모임
- © 빨간 사과의 모임
- ② IQ 150 이상인 사람들의 모임
- ⑪ 운동 잘 하는 사람들의 모임

- 2. 다음에서 유한집합과 무한집합을 구별하고, 원소나열법으로 나타내어진 집합은 조건제시법으로, 조건제시법으로 나타내어진 집합은 원소나열법으로 나타내면?
- $(1) \{1, 2, 3, 4, \cdots \}$
- $(2) \{ 2, 3, 5, 7 \}$
- $(3) \{x \mid x 는 홀수\}$
- (4) {n | n 은 12 의 양의약수}

3. 집합 $A = \{2, 3\}$, $B = \{z \mid z = x + y, x \in A, y \in A\}$, $C = \{z \mid z = xy, x \in A, y \in A\}$ 일 때, $A \cup (B \cap C)$ 를 구하면?

4. 집합 $A = \{1, 2, 3\}$ 에 대하여 부분집합을 구하면?

- 5. 전체집합을 $U=\{1,2,3,4,5,6,7\}$ 이라 하고 $A=\{1,2,5,7\}, B=\{1,2,4,6\}, C=\{2,5,6,7\}$ 이라 할 때. 다음을 구하면?
- (1) $n(A \cup B)$
- (2) $n(A \cap B)$
- (3) $n(A \cap C^c)$
- 6. 1부터 100까지의 자연수들 중에서 4, 5, 6 에 의해 나누어지는 모든 자연수들의 총 개수를 구하면?

2 명제

1) 조건과 명제

조건

문자 x 를 포함하는 문장이나 식이 x 의 값에 따라 참, 거짓이 판정될 때, 이를 조건 p(x), q(x), r(x) 등으로 나타낸다.

이 때, 조건을 참이 되게 하는 변수들의 값을 모아둔 집합을 진리집합이라 한다.

② 명제

참, 거짓을 판별할 수 있는 문장이나 수식을 명제라 한다. "p 이면 q 이다." 이라 할 때, p 를 가정, q 를 결론이라 하며 $p \rightarrow q$ 으로 나타낸다. 이 명제가 참이면 $p \Rightarrow q$ 으로 나타낸다 또한 'p가 아니면' 이라는 기호는 $\sim p$ 로 나타낸다.

참고

- ⊙ 명제를 거짓으로 판명하는 방법은 '반례'라는 하나의 예를 찾으면 된다.
 - ① 참인 명제를 확인하는 방법 중 하나는 p의 진리집합 P, q의 진리집합 Q에 대하여 $P \subset Q$ 을 만족하면 참인 명제다.

2) 명제의 역, 이, 대우

- ① 명제 $p \rightarrow q$ 의 역 : $q \rightarrow p$
- ② 명제 $p \rightarrow q$ 의 이 : $\sim p \rightarrow \sim q$
- ③ 명제 $p \rightarrow q$ 의 대우 : $\sim q \rightarrow \sim p$
- 참고 명제가 참이면 그 대우도 반드시 참이다.

3) 충분조건과 필요조건

- ① 충분조건과 필요조건 참인 명제 $p \Rightarrow q$ 에 대하여 $p \vdash q$ 가 되기 위한 충분조건이라 하며, $q \vdash p$ 가 되기 위한 필요조건이라 한다.
- ② 필요충분조건 명제 $p \Rightarrow q$ 가 참이고, 그의 역 $q \Rightarrow p$ 도 참일 때 다음과 같이 이야기한다. $p \vdash q$ 가 되기 위한 필요충분조건, $q \vdash p$ 가 되기 위한 필요충분조건라 하며, 기호는 $p \Leftrightarrow q$ 라고 나타낸다.

7. 명제 "x, y가 자연수이면, xy도 자연수이다." 의 역, 이, 대우 중 참인 명제는?

8. 다음 명제 "|x-2| < a이면 $x^2 - x - 20 < 0$ 이다" 가 참일 때의 정수 a의 최댓값은?

급 1. ⑤, ⑥, ⑩, ⑪ 2. (1) 무한집합, $\{x | x 는 자연수\}$ (2) 유한집합, $\{x | x 는 10$ 이하의 소수》 (3) 무한집합, $\{1, 3, 5, \cdots\}$ (4) 유한집합, $\{1, 2, 3, 4, 6, 12\}$ 3, $\{2, 3, 4, 6\}$ 4, $\{\}$, $\{1\}$, $\{2\}$, $\{3\}$, $\{1, 2\}$, $\{1, 3\}$, $\{2, 3\}$, $\{1, 2, 3\}$ 5. (1) 6 (2) 2 (3) 1 6. 46 7. 대우 8. 3

3 실수

1) 수체계

일반적으로 수를 자연수 N. 정수 Z. 유리수 Q. 실수 R. 복소수 C에 대하여 $N \subset Z \subset Q \subset R \subset C$ 을 만족하는 수체계를 갖는다.

2) 실수의 연산

① 지수법칙

$$x^0 = 1 \quad (x \neq 0)$$

$$\exists x^n \times x^m = x^{n+n}$$

② 거듭제곱근

실수 a와 2이상의 자연수 n에 대하여 n제곱하여 a가 되는 수를 x라 하면, x를 a의 n 제곱근이라고 한다. 즉. $x^n = a$ 을 만족하는 x = n제곱근이라 한다.

이 때, a의 제곱근, 세제곱근, 네제곱근, \cdots 을 통틀어 a의 거듭제곱근이라고 한다.

① 거듭제곱근의 성질

a>0이고 n, m이 자연수일 때, 다음과 같이 정리할 수 있다.

(a)
$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

(a)
$$\sqrt[n]{a} = a^{\frac{1}{n}}$$
 (b) $\sqrt[n]{a^m} = a^{\frac{m}{n}}$

① 제곱근의 곱셈과 나눗셈

a > 0, b > 0일 때, 다음과 같이 정리할 수 있다.

- (a) $\sqrt{a}\sqrt{b} = \sqrt{ab}$
- (b) $\sqrt{a^2b} = a\sqrt{b}$

- € 분모의 유리화

a > 0, b > 0일 때, 다음과 같이 정리할 수 있다.

(a)
$$\frac{a}{\sqrt{b}} = \frac{a \times \sqrt{b}}{\sqrt{b} \times \sqrt{b}} = \frac{a\sqrt{b}}{b}$$

- ② 제곱근의 덧셈과 뺄셈
 - (a) $m\sqrt{a} + n\sqrt{a} = (m+n)\sqrt{a}$
 - (b) $m\sqrt{a}-n\sqrt{a}=(m-n)\sqrt{a}$

- 1. 다음 식을 간단히 구하면?

- $(1) \ (-a)^3 \times (-a)^5 \qquad \qquad (2) \ (a^3)^5 \times (a^3)^4 \qquad \qquad (3) \ (6a^4 \, b^5 \, c^3)^2 \times (-2ab^2)^3$

- $(4) \left(3x^2y^2\right)^2 \times \left(-2x^2y\right) \qquad (5) \left(-x^2y^3z\right)^5 \div \left(-xy^2z^4\right)^3 \qquad (6) \left(\frac{q^2}{n^3}\right)^4 \div \left(\frac{q^4}{n^2}\right)^3$

2. $\sqrt{(-3)^2} \times \sqrt{(-2)^2} - \sqrt{(-5)^2}$ ≤ 3

3.
$$0 < a < 1$$
일 때, $\sqrt{\left(a + \frac{1}{a}\right)^2} - \sqrt{\left(a - \frac{1}{a}\right)^2}$ 의 값은?

4. 다음
$$\frac{3}{\sqrt{5}} + \sqrt{\frac{21}{2}} \div \frac{\sqrt{15}}{\sqrt{14}} - \sqrt{(-2)^2} \times (-\sqrt{5})^2$$
의 값은?

5.
$$6\sqrt{3} - \sqrt{75} + \sqrt{45} - 4\sqrt{5} = a\sqrt{3} + b\sqrt{5}$$
 일 때, $a+b$ 의 값은?

6.
$$\sqrt{72} - \sqrt{75} + \frac{2}{3\sqrt{2}} - \frac{3}{2\sqrt{3}} = \frac{a\sqrt{2}}{3} + \frac{b\sqrt{3}}{2}$$
 일 때, $a+b$ 의 값은?

7. a>0, b>0, x>0, y>0일 때, 다음을 간단히 하면?

$$(1) \quad \sqrt[5]{a^2} \times \sqrt[3]{a}$$

(2)
$$a^{\frac{1}{2}} \times a^{-\frac{1}{3}} \div a^{\frac{3}{2}}$$

(3)
$$a^{-\frac{1}{2}} \div a^{\frac{1}{4}} \times a^{\frac{3}{4}}$$

$$(4) \quad \sqrt[4]{a^5} \times \sqrt{a^3} \div \sqrt[3]{a^5}$$

(5)
$$(x^3)^3 \times x^{-2} \times \sqrt{x^3} \times \frac{1}{\sqrt[3]{x^2}}$$

$$(6) \sqrt[3]{x^2y^5} \div \sqrt[4]{x^5y^2} \times \sqrt{x^3y}$$

8. $a^{2x} = 2$ 일 때, 다음 식의 값을 구하면? (단, a > 0)

$$(1) \ \frac{a^x + a^{-x}}{a^x - a^{-x}}$$

(2)
$$\frac{a^{3x} + a^{-3x}}{a^x + a^{-x}}$$

9. a>0이고 $\frac{a^x+a^{-x}}{a^x-a^{-x}}=3$ 일 때, a^{2x} 의 값을 구하면?

4 복소수

1) 복소수

① 복소수의 정의

제곱하여 -1이 되는 수를 i라 표현하며, 이것을 허수단위라 한다. 즉, $i^2 = -1$, $i = \sqrt{-1}$ 임의의 실수 a. b에 대하여 a+bi의 꼴로 나타낼 수 있는 수를 복소수라 한다.

이 때, a를 실수부분, b를 허수부분이라 한다. 또한 a=0, $b\neq 0$ 인 bi의 꼴을 순허수라 한다. 임의의 실수 a, b에 대하여 복소수 z=a+bi 일 때, a-bi를 z의 켤레복소수라 한다.

이 때, z의 켤레복소수를 z bar라 읽으며, $\overline{z} = \overline{a+bi} = a-bi$ 로 나타낸다.

② 복소수의 연산

덧셈	(a+bi) + (c+di) = (a+c) + (b+d)i
뺄셈	(a+bi) - (c+di) = (a-c) + (b-d)i
곱셈	(a+bi)(c+di) = (ac-bd) + (ad+bc)i
나눗셈	$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \left(\frac{ac+bd}{c^2+d^2}\right) + \left(\frac{bc-ad}{c^2+d^2}\right)i (\text{T.} c+di \neq 0)$

10. 다음을 간단히 하면?

(1)
$$\sqrt{-9} + \sqrt{-4} + \sqrt{-16} - \sqrt{-25}$$

$$(2) \quad \sqrt{-3} \times \sqrt{-6} \times \sqrt{-2}$$

$$(3) (4+3i)-(2-5i)$$

$$(4) (1+2i)(2-3i)$$

(5)
$$(1+i)^2 + (1-i)^2$$

(6)
$$\frac{2}{1-i} + \frac{2}{1+i}$$

1. (1) a^8 (2) a^{27} (3) $-288a^{11}b^{16}c^6$ (4) $-18x^6y^5$ (5) $\frac{x^7y^9}{z^7}$ (6) $\frac{1}{p^6q^4}$ 2. 1 3. 2a 4. $2\sqrt{5}-10$ 5. 0 6. 8 7. (1) $a^{\frac{11}{15}}$ (2) $a^{-\frac{4}{3}}$ (3) 1 (4) $a^{\frac{13}{12}}$ (5) $x^{\frac{47}{6}}$ (6) $x^{\frac{11}{12}}y^{\frac{5}{3}}$ 8. (1) 3 (2) $\frac{3}{2}$ 9. 2 10. (1) 4i (2) -6i (3) 2+8i (4) 8+i (5) 0 (6) 2

5 다항식

1) 용어정리

숫자와 문자, 문자와 문자 사이에 곱으로만 이루어진 식을 **단항식**이라 한다. 이 때, 두 개 이상의 단항식을 합 또는 차로 연결한 식을 **다항식**이라 한다. 이 때, 다항식에 포함된 각각의 단항식을 항이라 하며, 문자를 제외한 나머지 부분을 **계수가** 한다. 다항식에서 각 항의 차수가 같을 때는 **동차식**이라고 한다. 또한, 단항식에 포함된 문자 인수의 개수를 차수라 하며, 다항식의 각 항의 차수 중에서 가장 큰 것을 다항식의 **차수**라 한다.

다항식을 특정한 문제에 대하여 차수가 높은 항부터 낮은 항의 순서로 나타내는 것을 **내림차순**이라 하며, 낮은 항부터 높은 항의 순서로 나타내는 것을 **오름차순**이라 한다.

다항식의 연산의 순서는 한 문자에 관하여 정리를 한 후, 동류항을 정리한다.

2) 곱셈공식

$$(2) (a+b)^2 = a^2 + 2ab + b^2$$

$$(3) (a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)(a-b) = a^2 - b^2$$

(5)
$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

(ax+b)(cx+d) =
$$acx^2 + (ad+bc)x + bd$$

$$(7) (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

(8)
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

(9)
$$(a+b+c)^2 = a^2+b^2+c^2+2(ab+bc+ca)$$

$$(a+b+c)(a^2+b^2+c^2-ab-bc-ca) = a^3+b^3+c^3-3abc$$

3) 곱셈공식의 변형

①
$$a^2 + b^2 = (a+b)^2 - 2ab$$

②
$$a^2 + b^2 + c^2 = (a+b+c)^2 - 2(ab+bc+ca)$$

(3)
$$a^3 + b^3 = (a+b)^3 - 3ab(a+b)$$

$$(4)$$
 $a^3 - b^3 = (a - b)^3 + 3ab(a - b)$

4) 다항식의 나눗셈

다항식 A를 다항식 B로 나누었을 때의 몫을 Q. 나머지를 R이라 하면 다음과 같다.

A = BQ + R (단, R의 차수는 B의 차수보다 낮다.)

이 때, 위의 다항식에서 R=0이면, A는 B로 나누어떨어진다고 한다.

예제

- 1. 세 다항식 $A = 2x^2 + 5xy + y^2$, $B = x^2 3xy + 2y^2$, $C = -x^2 + xy 3y^2$ 에 대하여 다음을 계산하면?
- (1) A + B + C
- (2) $2(A+B)-\{B-(A+C)\}$
- 2. 다음 식을 전개하면?

$$(1) (2x+3y)^2$$

$$(2) (3x-4y)^2$$

(3)
$$(5x+2)(2-5x)$$

$$(4) (7x-3y)(4x+2y)$$

(5)
$$(x+1)(x-2)(x+3)$$

(6)
$$(2x-3y)^3$$

3. x+y=5, xy=3일 때 x^2+y^2 의 값은?

4.
$$x+y=4$$
, $xy=2$ 일 때 x^3+y^3 의 값은?

5.
$$x+y+z=1, x^2+y^2+z^2=2, x^3+y^3+z^3=1$$
일 때 xyz 의 값을 구하면?

6. 세 수
$$a$$
, b , c 에 대하여 $a+b+c=1$, $ab+bc+ca=2$, $abc=3$ 을 만족할 때, $(a+b)(b+c)(c+a)$ 의 값을 구하면?

7.
$$x^3 - 2x - 6$$
을 $x - 2$ 으로 나눌 때 몫과 나머지를 구하면?

8.
$$x$$
에 대한 다항식 x^3-x+3 을 $x-1$ 으로 나눌 때 몫과 나머지를 구하면?

된 1. (1)
$$2x^2 + 3xy$$
 (2) $6x^2 + 13xy + 2y^2$ 2. (1) $4x^2 + 12xy + 9y^2$ (2) $9x^2 - 24xy + 16y^2$ (3) $4 - 25x^2$ (4) $28x^2 + 2xy - 6y^2$ (5) $x^3 + 2x^2 - 5x - 6$ (6) $8x^3 - 36x^2y + 54xy^2 + 27y^3$ 3. 19 4. 40 5. $-\frac{1}{2}$ 6. -1 7. 몫: $x^2 + 2x + 2$. 나머지: -2 8. 몫: $x^2 + x$, 나머지: 3

6 유리식과 무리식

1) 유리식

분모, 분자가 다항식으로 주어진 식 즉, 다항식 $A, B(B \neq 0)$ 에 대하여 $\frac{A}{B}$ 을 유리식이라 한다. 이때, 유리식의 연산은 다음과 같다.

- ① 유리식의 덧셈 : $\frac{A}{B} + \frac{C}{D} = \frac{A}{B} \left(\frac{D}{D} \right) + \frac{C}{D} \left(\frac{B}{B} \right) = \frac{AD + CB}{BD}$
- ② 유리식의 뺄셈 : $\frac{A}{B} \frac{C}{D} = \frac{A}{B} \left(\frac{D}{D} \right) \frac{C}{D} \left(\frac{B}{B} \right) = \frac{AD CB}{BD}$
- ③ 유리식의 곱셈 : $\frac{A}{B} \times \frac{C}{D} = \frac{AC}{BD}$
- ④ 유리식의 나눗셈 : $\frac{A}{B} \div \frac{C}{D} = \frac{A}{B} \times \frac{D}{C} = \frac{AD}{BC}$
- ⑤ 유리식의 약분 : $\frac{AB}{AC} = \frac{B}{C}$, $\frac{AB+AC}{AD} = \frac{A(B+C)}{AD} = \frac{B+C}{D}$ (단, $A \neq 0$)

2) 유리식의 변형

- ① 이항분리(부분분수) : $\frac{1}{A \cdot B} = \frac{1}{B A} \left(\frac{1}{A} \frac{1}{B} \right)$
- ② 번분수형태 : $\frac{\frac{A}{B}}{\frac{C}{D}} = \frac{AD}{BC}$

3) 무리식

근호 안에 문자를 포함하는 식 중에서 유리식으로 나타낼 수 없는 식을 무리식이라 한다. 무리식의 계산은 무리수의 계산과 같은 방법으로 한다. 특히 분모에 무리식이 있으면 분모를 유리식으로 고쳐서 간단히 한다.

- ① 분모 또는 분자가 \sqrt{a} 일 경우, $\frac{\sqrt{a}}{\sqrt{a}}$ 를 곱한다.
- ② 분모 또는 분자가 $\sqrt{a}-\sqrt{b}$ 일 경우, $\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}$ 를 곱한다.
- ③ 분모 또는 분자가 $\sqrt{a}+\sqrt{b}$ 일 경우, $\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}-\sqrt{b}}$ 를 곱한다.

©
$$\sqrt{a+b-2\sqrt{ab}} = \sqrt{a} - \sqrt{b}$$
 (단, $a > b$)

(1)
$$x + \frac{1}{x}$$

(2)
$$\frac{1}{x+1} - \frac{2}{2x-1}$$

(3)
$$\frac{x}{x^2-1} + \frac{3}{x+1}$$

(4)
$$\frac{1}{2(x^2+2x)} - \frac{1}{4x}$$

2.
$$1 - \frac{1}{1 - \frac{$$

3. 다음 *A*, *B*, *C*를 구하면?

(1)
$$\frac{2x-3}{x^2-5x+6} = \frac{A}{x-2} + \frac{B}{x-3}$$
 (2)
$$\frac{x+5}{x^2+3x+2} = \frac{A}{x+1} + \frac{B}{x+2}$$

(2)
$$\frac{x+5}{x^2+3x+2} = \frac{A}{x+1} + \frac{B}{x+2}$$

$$(3) \quad \frac{9x}{(x-1)(x+2)^2} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2} \qquad (4) \quad \frac{5}{(x+1)(x^2+4)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+4}$$

(4)
$$\frac{5}{(x+1)(x^2+4)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+4}$$

4. 다음 식의 분자 또는 분모를 유리화 하면?

$$(1) \ \frac{1}{\sqrt{x} - \sqrt{x+1}}$$

$$(2) \ \frac{x - \sqrt{x^2 - x}}{3x}$$

$$(3) \quad \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} - \sqrt{y}}$$

5.
$$x = \frac{1}{1+\sqrt{2}}$$
 일 때, $\frac{\sqrt{x}-1}{\sqrt{x}+1} + \frac{\sqrt{x}+1}{\sqrt{x}-1}$ 의 값은?

6. 다음 이중근호
$$\sqrt{5+\sqrt{24}}+\frac{1}{\sqrt{5+\sqrt{24}}}=a\sqrt{3}+b\sqrt{2}$$
을 만족한다. 이 때, $a+b$ 의 값을 구하며?

1. (1)
$$\frac{x^2+1}{x}$$
 (2) $\frac{-3}{(x+1)(2x-1)}$ (3) $\frac{4x-3}{x^2-1}$ (4) $\frac{-x}{4x(x+2)}$ 02. 2 3. (1) $A=-1$, $B=3$ (2) $A=4$, $B=-3$ (3) $A=1$, $B=-1$, $C=6$ (4) $A=1$, $B=-1$, $C=1$ 4. (1) $-\sqrt{x}+\sqrt{x+1}$ (2) $\frac{1}{3(x+\sqrt{x^2-x})}$ (3) $\frac{x+2\sqrt{xy}+y}{x-y}$ 5. $-2-2\sqrt{2}$ 6. 2

7 인수분해

하나의 다항식을 두 개 이상의 다항식의 곱으로 나타내는 것을 인수분해라 한다. 이 때, 곱을 이루는 각각의 다항식을 인수라 한다.

1) 인수분해 기본공식

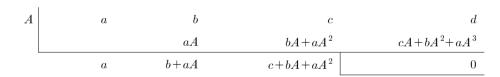
- (2) $a^2 + 2ab + b^2 = (a+b)^2$

(3) $a^2 - 2ab + b^2 = (a - b)^2$

- (4) $a^2 b^2 = (a+b)(a-b)$
- ⑤ $acx^2 + (ad + bc)x + bd = (ax + b)(cx + d)$ ⑥ $a^3 + b^3 = (a + b)(a^2 ab + b^2)$
- (7) $a^3 b^3 = (a b)(a^2 + ab + b^3)$

2) 조립제법

3차 이상의 다항식은 공통인수가 있다면 인수로 묶어서 인수분해 하는 것이 빠르다. 하지만 공통인수가 묶이지 않는 경우에서는 조립제법을 이용하여 인수분해를 한다. 예를 들어. $f(x) = ax^3 + bx^2 + cx + d$ 에 대하여 조립제법은 다음과 같다. $f(x) = ax^3 + bx^2 + cx + d$ 일 때, f(A) = 0을 만족하는 A를 찾는다. 이 때, x-A은 f(x)의 인수이므로 조립제법을 이용하여 인수분해한다.



1. 다음 식을 인수분해하면?

(1) $x^3y - x^3$

(2) (x-1)a+(x-1)

(3) 1 - m - n + mn

(4) $xy + y^2 - xz - yz$

2. 다음 식을 인수분해하면?

(1)
$$a^2 + 2a + 1$$

(2)
$$4x^2 + 4x + 1$$

(3)
$$x^2 - 10x + 25$$

(4)
$$9x^2 - 24xy + 16y^2$$

(5)
$$x^2 + x + \frac{1}{4}$$

(6)
$$x^2 - 2 + \frac{1}{x^2}$$

(7)
$$x^2 - 4$$

(8)
$$x^2 - 16y^2$$

3. 다음 식을 인수분해하면?

(1)
$$x^2 + 3x + 2$$

(2)
$$x^2 - 10x + 21$$

(3)
$$2x^2 - x - 3$$

(4)
$$x^2 - 2xy - 8y^2$$

(5)
$$x^4 - 3x^2 - 4$$

(6)
$$x^4 + x^2 - 2$$

(7)
$$x^4 - 1$$

(8)
$$(a+1)^2-3(a+1)+2$$

4. 다음 식을 인수분해하면?

(1)
$$f(x) = x^3 - x^2 + x - 1$$

(2)
$$f(x) = x^3 - 4x^2 + x + 6$$

(3)
$$f(x) = x^3 - 3x^2 + 4x - 2$$

(4)
$$f(x) = x^3 + x^2 - x + 2$$

$$\begin{array}{l} \blacksquare & \text{1. (1)} \ x^3(y-1) & \text{(2)} \ (x-1)(a+1) & \text{(3)} \ (1-m)(1-n) & \text{(4)} \ (x+y)(y-z) & \text{2. (1)} \ (a+1)^2 & \text{(2)} \ (2x+1)^2 & \text{(3)} \ (x-5)^2 \\ \text{(4)} \ (3x-4y)^2 & \text{(5)} \ \left(x+\frac{1}{2}\right)^2 & \text{(6)} \ \left(x-\frac{1}{x}\right)^2 & \text{(7)} \ (x+2)(x-2) & \text{(8)} \ (x+4y)(x-4y) & \text{3. (1)} \ (x+1)(x+2) & \text{(2)} \ (x-7)(x-3) \\ \text{(3)} \ (2x-3)(x+1) & \text{(4)} \ (x-4y)(x+2y) & \text{(5)} \ (x+2)(x-2)(x^2+1) & \text{(6)} \ \left(x^2+2\right)(x+1)(x-1) & \text{(7)} \ (x^2+1)(x+1)(x-1) \\ \text{(8)} \ a(a-1) & \text{4. (1)} \ (x-1)(x^2+1) & \text{(2)} \ (x+1)(x-3)(x-2) & \text{(3)} \ (x-1)(x^2-2x+2) & \text{(4)} \ (x+2)(x^2-x+1) \\ \end{array}$$

1 x, y 가 실수 일 때, 다음 식을 간단히 하면?

(1)
$$(-2x^2y^4)^3 \div 6x^5y^2$$

(2)
$$(x^2y^3)^4 \div (x^4y^3)^2 \times \left(\frac{x}{y^3}\right)^3$$

(3)
$$(3x^2y^3)^2 \times (2x^5y^3)^3 \div (x^4y)^6$$

(4)
$$(3x^2y)^2 \times \left(\frac{1}{3}x^2y\right)^2 \div (x^2y)^4$$

2 다음을 간단히 하면? (단, $a \neq 0$, $x \neq 0$)

$$(1) \ a^3 \times a^4 \div a^9$$

(2)
$$a^{-2} \times (a^{-3})^2$$

(3)
$$(a^{-4})^2 \times (a^{-5})^{-3} \div a^{-5}$$

(4)
$$(8x^2 - 4xy) \div \frac{1}{2}x$$

3 다음 식을 간단히 하면?

(1)
$$\sqrt{(-2)^2} + \sqrt[3]{(-2)^3} + \sqrt[4]{(-2)^4} + \sqrt[5]{(-2)^5}$$

$$(2) \quad \sqrt[3]{54} + \sqrt[3]{16} - \sqrt[3]{2}$$

4 다음 식을 간단히 하면?

$$(1) \ 3^{\frac{1}{3}} \times 3^{\frac{1}{6}}$$

(2)
$$2^{\frac{1}{4}} \div 2^{-\frac{3}{4}}$$

(3)
$$\left(\frac{4}{9}\right)^{-\frac{1}{2}}$$

$$(4) \left(2^{\frac{1}{2}} \times 3^{\frac{1}{3}}\right)^{6}$$

(5)
$$\left\{ \left(\frac{16}{81} \right)^{\frac{3}{4}} \right\}^{-\frac{1}{3}}$$

(6)
$$8^5 \times \left(\frac{1}{16}\right)^2 \div 64$$

- $\frac{3^x-3^{-x}}{3^x+3^{-x}}=\frac{1}{3}$ 일 때, 9^x-9^{-x} 의 값은?
- 7 두 다항식 $A = 7x^3 + 5x^2 x 1, B = -2x^3 + 4x^2 5x + 6$

일 때. A-B를 구하면?

 $e^{2x} = 3$ 일 때, 다음 식의 값을 구하면? (단, e > 0)

$$(1) \left(\frac{1}{e^3}\right)^{-4x}$$

(2)
$$\frac{e^x - e^{-x}}{e^x + e^{-x}}$$

(3)
$$\frac{e^{3x} - e^{-3x}}{e^x - e^{-x}}$$

8 다음 식을 전개 하면?

(1)
$$(x-1)(x^2+2x-1)$$

(2)
$$(x-2)(3x^2+x+1)$$

$$(3) \ (a-2b) \left(a^2-ab-3b^2\right)$$

(4)
$$(2x+1)(x^2-x-2)$$

(5)
$$(x-2xy-y)(x-y)$$

(6)
$$(4x^2-x-2)(x-1)$$

(7)
$$(x^2-2xy-y^2)(x-y)$$

(8)
$$(x^2+2)(x^2-3x-5)$$

- 9 곱셈 공식을 이용하여 다음 식을 전개하면?
 - $(1) (x+4y)^2$
 - (2) $\left(x + \frac{3}{2}y\right)^2$
 - $(3) (3x-4)^2$
 - $(4) (x-3y)^2$
 - (5) (x+y)(x-y)
 - (6) (2a-1)(2a+1)
 - (7) (3a+b)(3a-b)
 - (8) (x-4)(x-5)
 - (9) (2x+1)(3x+1)
 - (10) (3x+2)(2x-5)
- 10 다항식 f(x)를 g(x)로 나누었을 때의 몫과 나머지를 구하면?
 - (1) $f(x) = 4x^3 x^2 + 5x + 6$, g(x) = x + 2
 - (2) $f(x) = -2x^3 4x^2 + 3x + 2$, g(x) = x 1
 - (3) $f(x) = 3x^3 + 3x^2 2x + 2$, $g(x) = x^2 x + 2$

- **11** 실수 x, y에 대하여 다음을 구하면?
 - (1) x+y=6, xy=3일 때, x^2+y^2 의 값은?
 - (2) x+y=3, xy=-2일 때, x^3+y^3 의 값은?

12 다음의 식을 간단히 하면?

(1)
$$\frac{x^3 - xy^2}{x^2 - 2xy + y^2} \div \frac{x^2 + xy}{x + y}$$

(2)
$$\frac{x^2+x-6}{x^2-4x-5} \times \frac{x^2-3x-10}{x^2+2x-3}$$

(3)
$$\frac{x^2+x-2}{x^2-9} \div \frac{x^2-3x+2}{x+3} \times \frac{x-2}{x^2+2x}$$

13 세 수 a, b, c에 대하여

$$a+b+c=1$$
, $a^2+b^2+c^2=\frac{3}{2}$, $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ 을 만족할 때. abc 의 값을 구하면?

14 다음 분수식을 간단히 하면?

$$(1) \ 1 - \frac{1 + \frac{1}{a+1}}{1 - \frac{1}{a+1}}$$

- (2) $\frac{\frac{x}{1+x} \frac{1+x}{x}}{\frac{x}{1+x} \frac{1-x}{x}}$
- (3) $\frac{1}{1 \frac{1}{1 + \frac{1}{x}}} + \frac{1}{1 \frac{1}{1 \frac{1}{x}}}$

15 다음 식의 분모를 0으로 만들지 않는 임의의 실수

$$\frac{3}{x(x+3)} + \frac{4}{(x+3)(x+7)} + \frac{5}{(x+7)(x+12)} = \frac{a}{x(x+b)}$$

16 다음을 만족할 때 주어진 식의 값을 구하여라.

$$(1) \ x = \frac{\sqrt{2}}{2} \ \texttt{일} \ \text{때}, \ \sqrt{\frac{1+x}{1-x}} - \sqrt{\frac{1-x}{1+x}} \ \texttt{의 값은}?$$

$$(2) \ x = \frac{\sqrt{3}}{2} \ \text{ 델 때}, \ \frac{1}{1-\sqrt{x}} + \frac{1}{1+\sqrt{x}} \ \text{의 값은?}$$

(3)
$$x = \frac{1}{\sqrt{2}-1}$$
일 때, $\frac{\sqrt{x}-1}{\sqrt{x}+1} + \frac{\sqrt{x}+1}{\sqrt{x}-1}$ 의 값은?

17 다음 식을 인수분해하면?

(1)
$$xy + y^2 - xz - yz$$

(2)
$$9x^2 - 6x + 1$$

(3)
$$a^2 + 10ab + 25b^2$$

(4)
$$9x^2 - 24xy + 16y^2$$

(5)
$$x^2 + x + \frac{1}{4}$$

(6)
$$x^2-2+\frac{1}{x^2}$$

18 다음 식을 인수분해하면?

(1)
$$x^2 - 4$$

(2)
$$x^2 - 16y^2$$

(3)
$$a^2 - 9b^2$$

(4)
$$64x^2 - 9y^2$$

(5)
$$x^2 + 3x + 2$$

(6)
$$x^2 - 8x + 7$$

(7)
$$x^2 - 10x + 21$$

(8)
$$2x^2 - x - 3$$

(9)
$$3a^2+4a-7$$

(10)
$$x^2 - 2xy - 8y^2$$

(11)
$$2x^2 + xy - 3y^2$$

(12)
$$13a^2 - 8ab - 5b^2$$

19 다음 식을 인수분해하면?

(1)
$$x^3 - 6x^2 + 11x - 6$$

(2)
$$x^3 - x^2 + x - 6$$

(3)
$$2x^3 - 3x^2 - 2x + 3$$

(4)
$$2x^3 - 9x^2 + 7x + 6$$

방정식과 함수

1 방정식

변수를 포함하는 등식에서 변수의 값에 따라 참 또는 거짓이 되는 식을 방정식이라 한다. x에 관한 식 f(x)에 대하여 f(x)=0을 방정식이라 하며, x를 이 방정식에 해 또는 근이라 한다.

1) 이차 방정식

- ① 인수분해에 의한 풀이 x 에 관한 이차방정식이 (ax-b)(cx-d)=0 (단. $a\neq 0, c\neq 0$)과 같이 인수분해가 될 때. 이 방정식의 두 근은 $x = \frac{b}{x}$ 또는 $x = \frac{d}{x}$ 이다.
- ② 근의 공식에 의한 풀이 이차방정식 $ax^2+bx+c=0$ $(a\neq 0)$ 의 근은 $x=\frac{-b\pm\sqrt{b^2-4ac}}{2c}$ 이다.

증명
$$ax^2 + bx + c = 0$$
 일 때,
$$a\left(x^2 + \frac{b}{a}x\right) = -c \qquad \Leftrightarrow a\left(x^2 + \frac{b}{a}x + \frac{b^2}{4a^2}\right) = -c + \frac{b^2}{4a}$$

$$\Leftrightarrow a\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a} \qquad \Leftrightarrow \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$

$$\Leftrightarrow x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}} \qquad \Leftrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 이다.

2) 고차 방정식

3차 이상의 방정식을 고차방정식이라고 한다. 고차방정식을 풀 때에는 인수분해를 이용하거나 조립제법을 이용한다.

3) 근과의 계수와의 관계

① 이차방정식 $ax^2 + bx + c = 0$ 의 두 근을 α , β 라고 하면 다음이 성립한다.

$$\bigcirc \alpha\beta = \frac{c}{a}$$

② 삼차방정식 $ax^3 + bx^2 + cx + d = 0$ 의 세 근을 α, β, γ 라고 하면 다음이 성립한다.

4) 연립방정식

- ① 가감법 : 두 방정식을 변끼리 더하거나 빼어서 한 미지수를 소거하여 해를 구하는 방법
- ② 대입법 : 한 방정식을 한 미지수 x 또는 y에 대하여 풀고 이것을 다른 방정식에 대입하여 해를 구하는 방법

1. 다음 이차방정식을 풀면?

(1)
$$x^2 + 2x - 15 = 0$$

(2)
$$2x^2 - x - 1 = 0$$

(3)
$$x^2 - x - 1 = 0$$

$$(4) \ 2x^2 + x - 8 = 0$$

2. 다음 고차방정식을 풀면?

$$(1) \ x^4 - x^2 = 0$$

$$(2) \quad x^3 - 2x^2 + x - 2 = 0$$

(3)
$$x^3 - 3x^2 + x + 5 = 0$$

$$(4) \quad x^3 - x^2 - 10x - 8 = 0$$

3. 이차방정식 $2x^2 + x - 3 = 0$ 의 두 근을 α , β 라고 할 때, 다음 식의 값을 구하면?

(1)
$$\alpha + \beta$$

(2)
$$\alpha\beta$$

(3)
$$\alpha^2 + \beta^2$$

- **4.** 삼차방정식 $x^3 + 4x^2 + 3x 5 = 0$ 의 세 근을 α, β, γ 라고 할 때, 다음 식의 값을 구하면?

 - (1) $\alpha + \beta + \gamma$ (2) $\alpha\beta + \beta\gamma + \gamma\alpha$ (3) $\alpha\beta\gamma$

5. 다음 연립 방정식을 풀면?

$$(1) \quad \left\{ \begin{array}{l} 3x - 2y = 5 \\ x + 2y = -1 \end{array} \right.$$

$$(2) \begin{cases} 3x - y = 3 \\ 2x + y = 2 \end{cases}$$

6. 다음 연립방정식을 풀면?

$$(1) \begin{cases} x+y+z=3 \\ 2x+y-z=6 \\ 3x-2y+z=-4 \end{cases}$$

$$\begin{cases} x+y=7\\ y+z=10\\ z+x=9 \end{cases}$$

7. 다음 연립방정식을 풀면?

(1)
$$\begin{cases} x^2 - 2xy - 3y^2 = 0 \\ x^2 + y^2 = 10 \end{cases}$$

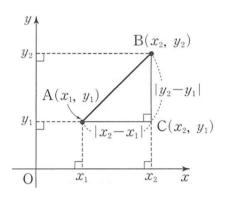
(2)
$$\begin{cases} x^2 - xy = 0 \\ 2xy - y^2 = 3 \end{cases}$$

2 좌표평면

2차원 데카르트 좌표계는 xy평면을 이루고 있으며 서로 직교하는 x축(수평방향)과 y축(수직방향)으로 정의한다. x축과 y축이 만나는 점을 원점이라고 부른다. 또한 좌표평면의 사분면은 x축, y축으로 나뉘는 직교좌표 평면상의 네 부분을 말하며 제 1사분면 \sim 제 4사분면으로 말한다.

1) 평면에서의 두 점 사이의 거리

두 점 $A(x_1,y_1)$, $B(x_2,y_2)$ 사이의 거리는 $\overline{AB} = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ 이다.



2) 평행이동 및 대칭이동

- ① x 축 방향으로 m 만큼, y 축 방향으로 n 만큼 평행이동
 - \bigcirc 점의 이동 : $(x,y) \rightarrow (x+m,y+n)$
 - ① 도형의 이동 : $y=f(x) \rightarrow y-n=f(x-m)$

② 대칭이동

- \bigcirc x 축 대칭 $\rightarrow y$ 좌표의 부호만 변한다.
- \bigcirc y 축 대칭 $\rightarrow x$ 좌표의 부호만 변한다.
- © 원점 대칭 $\rightarrow x, y$ 좌표의 부호가 모두 변한다.
- ② y=x 에 대한 대칭 $\rightarrow x,y$ 좌표가 바뀐다.
- \bigcirc y = -x 에 대한 대칭 $\rightarrow x, y$ 좌표와 부호가 모두 바뀐다.

3) 선분 *AB*의 내분점, 외분점, 중점

두 점 $A(x_1, y_1)$, $B(x_2, y_2)$ 에 대하여 다음이 성립한다.

- ① m:n 으로 내분(하는) 점 : $\left(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n}\right)$
- ② m:n 으로 외분(하는) 점 : $\left(\frac{mx_2-nx_1}{m-n},\frac{my_2-ny_1}{m-n}\right)$
- ③ 중점: $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

 $rac{\lambda}{2}$ 세 점 $A(x_1,y_1),\;B(x_2,y_2),\;C(x_3,y_3)$ 를 꼭지점으로 하는 삼각형의 무게중심 좌표는 $\left(\frac{x_1 + x_2 + x_3}{3} \, , \, \frac{y_1 + y_2 + y_3}{3}\right) \text{OIC}.$

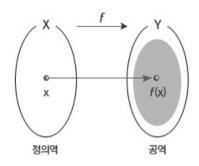
1. 두 점 A(4, -3), B(a, 3)사이의 거리가 $6\sqrt{2}$ 일 때, 상수 a의 값은? (단, a > 0)

2. 두 점 A(-1, 0), B(2, 1) 을 연결하는 선분 \overline{AB} 를 2:1 로 내분하는 점 P, 외분하는 점 Q, 중점 M의 좌표를 구하면?

3. 세 점 A(1,-2), B(3, 6), C(5, 2)를 꼭짓점으로 하는 삼각형 ABC에 대하여 세 변 BC, CA, AB 의 중점을 차례로 D, E, F라 할 때. 삼각형 DEF의 무게중심 G의 좌표를 구하면?

3 함수(function)

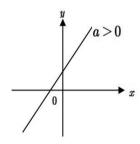
일반적으로, 두 집합 X, Y에서 X의 각 원소에 Y의 원소가 하나씩만 대응할 때, 이 대응을 X에서 Y로의 함수라 하고, 이것을 $f\colon X\to Y$ 와 같이 나타낸다. 이때, 집합 X를 함수 f의 정의역이라고 하고, 집합 Y를 함수 f의 공역이라고 한다. 특히 함수 f에 의하여 정의역 X의 원소 x에 공역 Y의 원소 y가 대응할 때, 이것을 기호로 y=f(x)와 같이 나타낸다. 여기서 x를 독립변수, y를 종속변수라 한다. 이때, f(x)를 함수 f에 의한 x에서의 함숫값이라고 한다. 또, 함수 f에 의한 함숫값 전체의 집합, $\{f(x)|x\in X\}$ 를 함수 f의 치역이라고 한다. 아래 그림에서 보듯이 일반적으로 치역은 공역의 부분집합이다.

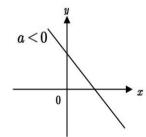


1) 다항함수

① 일차함수

y=ax+b $(a\neq 0)$ 인 함수를 일차함수라 하고 그래프는 기울기가 a이고, y절편이 b인 직선이다. 이 때, a= 기울기 $\left(=\frac{y$ 의증가량}{x의증가량}\right) 을 말한다.





<mark>참고</code> \bigcirc 한 점 $A(x_1,y_1)$ 을 지나고, 기울기가 a인 직선의 방정식(일차함수)는 다음과 같다.</mark>

$$y-y_1=a(x-x_1)$$

① 한 점 $A(x_1,y_1)$ 과 직선 ax+by+c=0과의 거리 d는 다음과 같다.

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

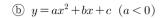
② 이차함수

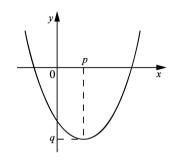
 $a \neq 0$ 인 함수 $y = ax^2 + bx + c = a(x-p)^2 + q$ 를 이차함수라 하고 그 그래프는 포물선이다.

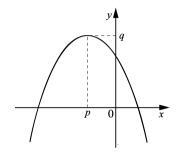
① a의 부호에 따라 이차함수의 모양을 판단한다.

a>0일 때, 포물선은 아래로 볼록하고, a<0일 때, 포물선은 위로 볼록하며 |a|의 값이 클수록 포물선의 폭이 좁아진다. 또한, b의 부호에 따라 축의 위치가 정해지고 c는 포물선의 y절편이다.

(a)
$$y = ax^2 + bx + c \ (a > 0)$$







① 판별식 D에 따라 이차함수의 모양을 판단한다.

판별식 $D=b^2-4ac$ 라고 할 때, 이차함수 $y=ax^2+bx+c$ 와 x축과의 교점은 아래와 같다.

- ⓐ D>0 \Leftrightarrow x축과 서로 다른 두 점에서 만난다.
- $\bigcirc D = 0 \Leftrightarrow x 축에 접한다.$
- $\bigcirc D < 0 \Leftrightarrow x$ 축과 만나지 않는다.

4. 다음 직선의 방정식을 구하면?

- (1) 점 (4,-1)을 지나고 기울기가 2인 직선

5. 세 점 A(1,-2), B(-3,1), C(5,a)가 일직선 위에 있을 때, a의 값을 구하면?

6. 다음 일차함수를 그려보면?

(1)
$$y = 3x - 1$$

(2)
$$y = -\frac{1}{2}x + 4$$

7. 다음 이차함수를 그려보면?

(1)
$$y = x^2 - x - 2$$

(2)
$$y = 2x^2 - 3x + 1$$

(3)
$$y = 3x^2 - x + 2$$

(4)
$$y = -2x^2 - x + 1$$

(5)
$$y = -x^2 + 2x - 1$$

(6)
$$y = -x^2 + x - 4$$

8. $y = x^2 + 2x + 3$ 의 그래프를 그리고 최댓값 또는 최솟값을 구하면?

9. 이차함수 $y = -x^2 + 6x + m$ 의 최댓값이 5일 때, m의 값을 구하면?

10. 다음 삼차함수를 그려보면?

(1)
$$y = x^3 - 2x^2 - x + 2$$

(2)
$$y = x^3 - x^2 - x + 1$$

(3)
$$y = x^3 - 7x + 6$$

$$(4) \ \ y = x^3 - 6x^2 + 12x - 8$$

11. 다음 두 그래프를 동시에 그려보면?

(1)
$$y = x^2$$
, $y = x + 2$

(2)
$$y = 2 - x^2$$
, $y = -x$

(3)
$$y = \frac{1}{4}x^2$$
, $y = \frac{1}{2}x + 6$

(4)
$$y = x^3$$
, $y = x$

[1. 10 2. $P\left(1,\frac{2}{3}\right)$, Q(3,2), $M\left(\frac{1}{2},\frac{1}{2}\right)$ 3. $G\left(\frac{8}{3},2\right)$ 4. (1) y=2x-9 (2) $y=\frac{1}{4}x+\frac{7}{4}$ 5. -5 6. 그림 생략 7. 그림 생략 8. 2 9. 14 10. 그림 생략 11. 그림 생략

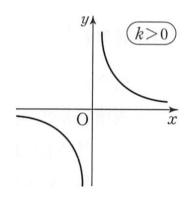
2) 유리함수 및 무리함수

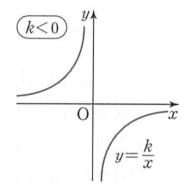
① 유리함수

함수 y=f(x)에서 f(x)가 x에 대한 유리식으로 나타내어진 함수를 유리함수라 한다.

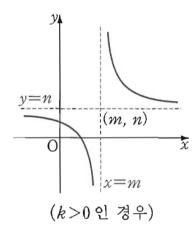
이 때, 유리함수는 다함함수와 분수함수로 구분하게 된다. 분수함수의 그래프는 다음과 같다.

① 함수
$$y = \frac{k}{x} (k \neq 0)$$
의 그래프





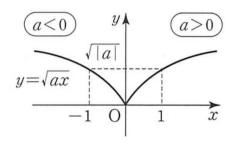
① 함수 $y = \frac{k}{x-m} + n \ (k \neq 0)$ 의 그래프



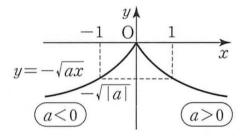
② 무리함수

함수 y = f(x)에서 f(x)가 x에 대한 무리식인 함수를 무리함수라 한다. 무리함수의 정의역이 주어 져 있지 않은 경우에는 근호 안의 값이 0이상이 되도록 하는 x의 값의 범위를 정의역으로 한다.

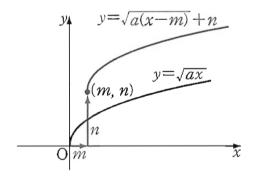
① 함수 $y = \sqrt{ax} (a \neq 0)$ 의 그래프



① 함수 $y = -\sqrt{ax}(a \neq 0)$ 의 그래프



© 함수 $y = \sqrt{a(x-m)} + n$ 의 그래프



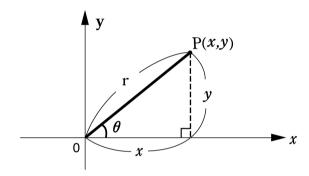
3) 삼각함수

각의 단위는 radian(라디안)과 °(도)는 다음과 같은 관계를 갖는다.

°(도)	0 °	30 °	45 °	60 °	90 °	135 °	180 °	270 °	360 °
radian	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{3\pi}{2}$	2π

① 삼각함수의 정의

동경 OP 가 x 축의 양의 방향(반시계 방향)과 이루는 각을 θ 라 하면, θ 에 대한 삼각함수는 다음과 같이 정의한다.



$$\bigcirc \cos \theta = \frac{x}{r}$$

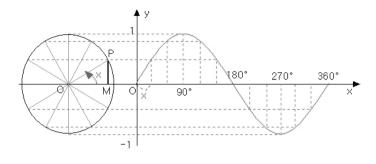
② 삼각함수의 기본공식

$$\Box 1 + \tan^2 \theta = \sec^2 \theta$$

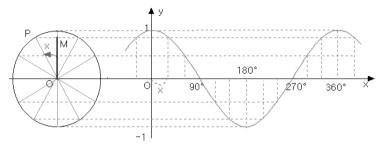
③ 특수 예각의 삼각비

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin heta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
an heta	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞

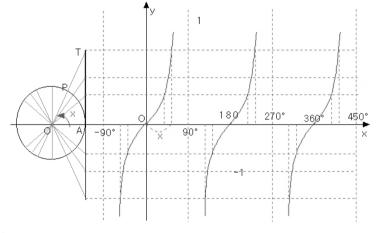
④ 삼각함수 그래프



 $\bigcirc y = \cos x$ 의 그래프



© y = tanx 의 그래프



⑤ 삼각함수의 둔각 계산법

삼각함수	-의 부호	$90^{\circ}\left($ 또는 $\frac{\pi}{2}\right) \times n \pm \theta$ 의 삼각함수 공식
sin	all	$\sin A$ 나 $\cos A$ 에서 예각이 아닌 각도 A 에 대하여 $90^{\circ}\left(\mathbb{ 4} \pm \frac{\pi}{2}\right) \times n \pm \theta$ 에서
tan	cos	① n: 짝수이면 sin→sin, cos→cos, tan→tan로 변함이 없다. ② n: 홀수이면 sin→cos, cos→sin, tan→cot로 변한다.

1. $\sin A = \frac{3}{4}$ 일 때, $\cos A, \tan A$ 의 값을 구하면? (단, $0 \le A \le \frac{\pi}{2}$)

2. $\cos A = x$ 일 때, $\tan A, \sin A$ 의 값을 x로 표현하면? (단, $0 \le A \le \frac{\pi}{2}, \ 0 < x < 1$)

- 3. 다음 식을 간단히 하면?
- (1) $(\sin x + \cos x)^2 + (\sin x \cos x)^2$

(2) $(1-\sin^2 x)(1-\cos^2 x)(1+\tan^2 x)(1+\cot^2 x)$

 $(3) \ \frac{\sin^2 x}{1 - \cos x}$

- 4. 다음 삼각방정식을 풀면? (단, $0 \le x < 2\pi$)
- (1) $2\cos^2 x + 3\sin x 3 = 0$

 $(2) \ 2\sin^2 x = \cos x + 1$

- 5. 다음 삼각함수의 값을 구하면?
- (1) sin150°

(2) $\cos 210^{\circ}$

(3) $\sin 300^{\circ}$

 $(4) \cos 330^{\circ}$

(5) tan135°

(6) sec150°

- ⑥ 삼각함수의 기본정리
 - ⊙ 덧셈정리
 - (a) $\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$
 - (b) $\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$
 - € 2배각 공식
 - (a) $\sin 2\alpha = 2\sin \alpha \cos \alpha$
- (b) $\cos 2\alpha = \cos^2 \alpha \sin^2 \alpha$

- ⓒ 반각 공식
 - $(a) \sin^2 \frac{\alpha}{2} = \frac{1 \cos \alpha}{2}$

- **6.** $\sin(30^{\circ} + \alpha) + \cos(60^{\circ} + \alpha)$ 와 같은 것을 구하면?
- 7. $\tan \alpha = \frac{1}{2}$, $\tan \beta = \frac{1}{5}$ 일 때, $\tan (\alpha + \beta)$ 의 값을 구하면? (단, α , β 는 모두 예각이다.)
- 8. $\sin x = \frac{3}{5}$ (x 는 예각)일 때, $\sin 2x$, $\cos 2x$ 의 값을 구하면?
- 9. $\sin\theta = \frac{12}{13}$ 일 때, $\sin 2\theta$ 의 값은? (단, $\frac{\pi}{2} < \theta < \pi$)

4) 지수함수 및 로그함수

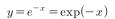
지수함수

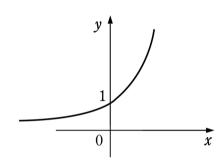
지수가 실수로 확장됐을 때에는 더 이상 거듭제곱의 원래 뜻인 'a를 n번 곱한다.'는 뜻은 의미가 없고, 오직 규칙만이 존재한다. 또한 실수 x에 대해 a^x 가 정의되므로 $y=a^x$ 을 수직선에 곡선으로 표현할 수 있으며 극한이나 미분, 적분을 적용할 수 있다.

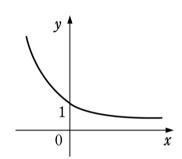
이 때. a를 밑으로 하는 함수 $y=a^x$ $(a>0, a\neq 1)$ 를 지수함수라 한다.

다만, 공학에서는 주로 밑이 e인 지수함수 $y=e^x$ 의 형태만을 주로 다룬다.

$$y = e^x = \exp(x)$$







② 로그

① 로그의 정의

임의의 양수 N에 대하여 $a^x = N$ 을 만족시키는 실수 x은 오직 하나만이 존재한다. 이 지수 x을 a를 밑으로 하는 N의 로그라 하고, $x = \log_a N$ 으로 나타낸다.

$$a^x = N \Leftrightarrow x = \log_a N$$

€ 로그법칙

a>0, $a \neq 1$, M>0, N>0 이라 할 때,

(a)
$$\log_a a = 1$$
, $\log_a 1 = 0$

(d)
$$\log_a M^n = n \log_a M$$
 (n: 실수)

$$(e) \log_{a^n} M = \frac{1}{n} \log_a M$$

③ 로그함수

 $y = \log_a x$ 는 a를 밑으로 하는 로그함수라고 한다. 특히, 공학에서는 주로 밑이 e인 로그함수 $y = \log_e x = \log x = \ln x$ 로 나타내며 이 로그를 자연로그라 한다.

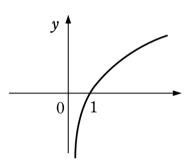
$$y = \ln x$$

$$\Box \ln MN = \ln M + \ln N$$

②
$$\ln M^n = n \ln M \ (n: 실수)$$

$$\bigcirc$$
 $e^{\ln M} = M$

$$\exists \log_{a^n} N = \frac{1}{n} \log_a N$$



예제

- 10. 식 $\log_3 \sqrt{6} \frac{1}{2} \log_3 \frac{1}{5} \frac{3}{2} \log_3 \sqrt[3]{30}$ 을 간단히 하면?
- **11.** 식 $\log_{10} 2 + \log_{10} \sqrt{15} \frac{1}{2} \log_{10} 0.6$ 을 간단히 하면?
- 12. 방정식 $x^{\ln x} = \frac{e^3}{x^2}$ 을 풀면?

1. $\frac{\sqrt{7}}{4}$, $\frac{3}{\sqrt{7}}$ 2. $\frac{\sqrt{1-x^2}}{x}$, $\sqrt{1-x^2}$ 3. (1) 2 (2) 1 (3) $1+\cos x$ 4. (1) $\frac{\pi}{6}$, $\frac{\pi}{2}$, $\frac{5\pi}{6}$ (2) $\frac{\pi}{3}$, π , $\frac{5\pi}{3}$ 5. (1) $\frac{1}{2}$ (2) $-\frac{\sqrt{3}}{2}$ (3) $-\frac{\sqrt{3}}{2}$ (4) $\frac{\sqrt{3}}{2}$ (5) -1 (6) $-\frac{2\sqrt{3}}{3}$ 6. $\cos \alpha$ 7. $\frac{7}{9}$ 8. $\frac{24}{25}$, $\frac{7}{25}$ 9. $-\frac{120}{169}$ 10. 0 11. 1 12. e^{-3} , e^{-3}

1 삼차방정식 $x^3 + 4x^2 + 3x - 5 = 0$ 의 세 근을 α, β, γ 라고 할 때, 다음 식의 값을 구하면?

(1)
$$\alpha + \beta + \gamma$$

(2)
$$\alpha\beta + \beta\gamma + \gamma\alpha$$

(3)
$$\alpha\beta\gamma$$

2 다음 연립방정식을 풀면?

$$(1) \begin{cases} 2x - y = 2 \\ y = x + 1 \end{cases}$$

(2)
$$\begin{cases} 3x - 2y = 5 \\ x + 2y = -1 \end{cases}$$

(3)
$$\begin{cases} 4x - 2y = 1 \\ 3x + y = -3 \end{cases}$$

3 다음 연립방정식을 풀면?

$$(1) \begin{cases} x+y-3z=2 \\ x-y-z=0 \\ -x+5y-z=2 \end{cases}$$

$$(2) \begin{array}{l} x + 2y - 2z = 2 \\ x - y - z = 0 \\ -x + 5y - z = 2 \end{array}$$

(3)
$$\begin{cases} x+y=5\\ y+z=6\\ z+x=7 \end{cases}$$

4 다음 연립방정식을 풀면?

(1)
$$\begin{cases} 2x + y = 3 \\ x^2 + xy + y^2 = 3 \end{cases}$$

(2)
$$\begin{cases} x^2 - 2xy - 3y^2 = 0 \\ x^2 + y^2 = 10 \end{cases}$$

(3)
$$\begin{cases} x^2 + xy - 2y^2 = 0 \\ x^2 + y^2 = 2 \end{cases}$$

5 다음 연립방정식을 풀면?

(1)
$$\begin{cases} x - 3y = 0 \\ x^2 - 2y = 11 \end{cases}$$

$$(2) \begin{cases} x+y=2\\ xy=-8 \end{cases}$$

6 두 점 *A*(3, −2), *B*(5, 2) 를 지나는 직선 *AB*가 점 (*a*, 4) 를 지날 때, *a* 의 값은? 7 이차함수 $y = x^2 - 2ax + a^2 - 2a + 6$ 의 그래프가 x 축과 서로 다른 두 점에서 만나도록 하는 실수 a 의 값의 범위는?

8 이차함수 $y=x^2-x+5$ 의 그래프와 직선 y=-3x+k가 만나지 않도록 하는 정수 k의 최댓값은? 9 다음 분수함수의 그래프를 그리면?

(1)
$$y = \frac{3}{x}$$

(2)
$$y = -\frac{1}{x}$$

(3)
$$y = \frac{1}{x+2} - 1$$

(4)
$$y = -\frac{2}{x-1} + 3$$

10 다음 무리함수의 그래프를 그리면?

$$(1) \ \ y = \sqrt{3x - 6}$$

$$(2) \ y = \sqrt{3 - x}$$

- 11 $\sin\theta + \cos\theta = \frac{1}{2}$ 일 때, 다음 값을 구하면?
 - (1) $\sin\theta\cos\theta$

(2) $\tan\theta + \cot\theta$

12 $\sin \alpha = \frac{13}{14}$, $\sin \beta = \frac{11}{14}$ 일 때, $\sin(\alpha+\beta)$, $\cos(\alpha+\beta)$, $\tan(\alpha+\beta)$ 의 값은? (단, α, β는 모두 예각)

- $\frac{\sin 120^{\circ} \cos 150^{\circ}}{\sin 510^{\circ} \cos 480^{\circ}}$ 의 값을 계산하면?
- 15 $\tan A = 1$, $\tan B = 2$ 이고, A, B가 모두 예각일 때, $\tan (A + B)$ 의 값을 구하면?

14 sin(-120°)의 값은?

- $16 \quad \text{다음에 물음에 답하면? } \left(\mathtt{단}, \ 0 < x < \frac{\pi}{2} \right)$
 - (1) $\cos x = \frac{1}{3}$ 일 때, $\cos 2x$ 의 값은?

(2) $\tan x = \frac{1}{2}$ 일 때, $\tan 2x$ 의 값은?

17 $0 \le x < 2\pi$ 에서 방정식 $2\cos^2 x + \sin x = 1$ 의모든 근의 합을 구하면?

18 다음 식을 간단히 하면?

(1)
$$\log_5 \frac{5}{4} + 2\log_5 \sqrt{20}$$

(2)
$$\log_3 \sqrt{3} - \log_3 3 \sqrt{3}$$

(3)
$$\log_2 1 + \log_3 1 + \log_4 1$$

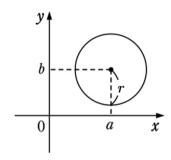
$$(4) \ \log_2 \sqrt{2} + \frac{1}{2} \log_2 \! 6 - \frac{1}{4} \log_2 \! 9$$

도형의 방정식과 부등식

1 도형의 방정식

1) 원의 방정식

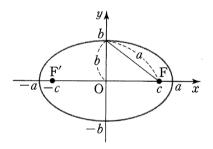
중심 (a,b)으로부터 거리가 r로 일정한 점의 자취를 원의 방정식이라 한다. 즉, 원의 방정식은 $(x-a)^2 + (y-b)^2 = r^2$ 으로 표현하며, 그림은 다음과 같다.



2) 타원의 방정식

한 평면 위에서 두 정점(초점)으로부터의 거리의 합이 일정한 점들의 집합을 타원이라 한다. 타원 위의 점에서 두 초점까지의 거리의 합은 장축의 길이와 같다.

① 두 초점 F(c, 0), F'(-c, 0) 으로부터 거리의 합이 2a(a>b>0) 인 타원의 방정식

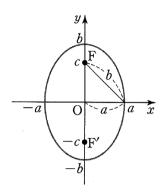


$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (단, $c^2 = a^2 - b^2$)

① 초점의 좌표 : $\mathrm{F}(\sqrt{a^2-b^2},\ 0),\ \mathrm{F}'(-\sqrt{a^2-b^2},\ 0)$

⑤ 장축의 길이 : 2a
 ⑥ 단축의 길이 : 2b
 ② 타원의 면적 : πab

② 두 초점 F(0, c), F'(0, -c) 로부터 거리의 합이 2b(b>a>0) 인 타원의 방정식



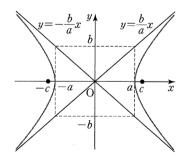
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (단, $c^2 = b^2 - a^2$)

- ① 초점의 좌표 : $\mathrm{F}(0,\ \sqrt{b^2-a^2}),\ \mathrm{F}'(0,\ -\sqrt{b^2-a^2})$
- © 장축의 길이 : 2b
- © 단축의 길이 : 2a
- ② 타원의 면적 : πab

3) 쌍곡선의 방정식

한 평면 위에서 두 정점(초점)으로부터의 거리의 차가 일정한 점의 자취는 쌍곡선이다. 쌍곡선 위의 점에서 두 초점까지의 거리의 차는 주축의 길이와 같다.

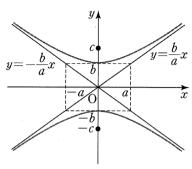
① 두 초점 F(c, 0), F'(-c, 0) 으로부터 거리의 차가 2a인 쌍곡선의 방정식



$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad (단, \ c^2 = a^2 + b^2)$$

- ① 초점의 좌표 : $F(\sqrt{a^2+b^2}, 0), F'(-\sqrt{a^2+b^2}, 0)$
- ① 꼭짓점의 좌표 : (a, 0), (-a, 0)
- © 주축의 길이 : 2a
- ② 점근선의 방정식 : $y=\pm \frac{b}{a}x$

② 두 초점 F(0, c), F'(0, -c) 으로부터 거리의 차가 2b인 쌍곡선의 방정식

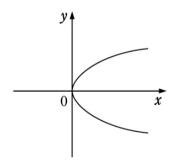


$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 \ (\ \ \ \ \ \ c^2 = a^2 + b^2)$$

- ① 초점의 좌표 : $F(0, \sqrt{a^2+b^2}), F'(0, -\sqrt{a^2+b^2})$
- © 꼭짓점의 좌표 : (0, b), (0, -b)
- © 주축의 길이 : 2b
- ② 점근선의 방정식 : $y=\pm \frac{b}{a}x$

4) 포물선

평면 위에서 한 정점(포물선의 초점)과 이점을 지나지 않는 한 정직선(포물선의 축)까지의 거리가 같은 점들의 자취를 포물선이라 한다. 가장 대표적인 포물선은 $y^2 = ax (a > 0)$ 을 말하며, 그림은 아래와 같다.

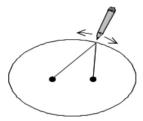


- 1. 두 원 $(x-1)^2 + (y+1)^2 = 1$, $(x-1)^2 + (y-4)^2 = 4$ 의 공통 내접선과 외접선의 길이는?
- 2. 다음 타원의 초점의 좌표, 장축의 길이, 단축의 길이를 각각 구하고, 그 그래프를 그려보면?

(1)
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

$$(2) \ \frac{x^2}{4} + \frac{y^2}{16} = 1$$

3. 5cm 떨어진 두 점에서 길이가 10cm 인 실을 묶고, 그림과 같이 실을 팽팽하게 유지하면서 곡선을 그린다. 그려진 곡선 안쪽의 면적은 얼마인가?



4. 다음 쌍곡선의 초점의 좌표, 꼭짓점의 좌표를 각각 구하고, 그 그래프를 그려보면?

$$(1) \ \frac{x^2}{16} - \frac{y^2}{9} = 1$$

$$(2) \ \frac{x^2}{25} - \frac{y^2}{9} = -1$$

5. 다음 쌍곡선의 점근선의 방정식을 구하면?

(1)
$$x^2 - \frac{y^2}{4} = 1$$

(2)
$$\frac{x^2}{5} - \frac{y^2}{4} = -1$$

2 부등식

1) 부등식

부등식이란 말 그대로 등식 a=b의 부정인 $a \neq b$ 형인 식을 말한다.

즉, 일반적으로 a < b, $a \le b$, $a \ge b$ 와 같이 대소의 순서관계를 나타내는 부등호로 연결한 식을 의미하다

① 이차부등식

이차방정식 $ax^2+bx+c=0$ (a>0)이 서로 다른 두 실근 α 와 β $(\alpha < \beta)$ 를 가질 때. 다음의 식을 만족한다.

- \bigcirc $ax^2 + bx + c < 0$ 의 해는 $\alpha < x < \beta$
- ① $ax^2 + bx + c \le 0$ 의 해는 $\alpha \le x \le \beta$
- ② $ax^2 + bx + c \ge 0$ 의 해는 $x \le \alpha$ 또는 $x \ge \beta$

② 구간표현

- \bigcirc $a \le x < b \Leftrightarrow \neg \neg \neg \land [a, b)$

- (\land) $x \leq b \Leftrightarrow \neg \neg \neg \neg \land (-\infty, b)$ (\circ) $a \leq x \Leftrightarrow \neg \neg \neg \land (a, \infty)$
- ③ 부등식이 나타내는 영역 (단, 등호가 들어가면 경계선을 포함한다.)
 - ① y > f(x)가 나타내는 영역은 y = f(x)의 윗부분
 - \bigcirc y < f(x)가 나타내는 영역은 y = f(x)의 아랫부분
 - $(\Box) x^2 + y^2 < r^2$ 이 나타내는 영역은 원 $x^2 + y^2 = r^2$ 의 내부
 - ② $x^2 + y^2 > r^2$ 이 나타내는 영역은 원 $x^2 + y^2 = r^2$ 의 외부

6. 다음 부등식을 풀면?

(1) $x^2 - 6x + 5 < 0$

(2) $x^2 - x - 2 \le 0$

(3) $x^2 - 4x + 3 > 0$

 $(4) -3x^2 + 4x + 15 < 0$

7. 다음 부등식의 영역을 좌표평면 위에 나타내면?

(1) 2x + 3y < 6

(2) $x^2 + y^2 - 4x \le 0$

8. 다음 부등식의 영역을 좌표평면 위에 나타내면?

(1) $D = \{(x,y) \mid x^2 + y^2 \le 1, \ 0 \le y \le x\}$

(2) $D = \{(x,y) \mid -1 \le x \le 1, x^2 + y^2 \ge 1\}$

(3)
$$R = \{(x, y) \mid 1 \le x^2 + y^2 \le 4, \ 0 \le y \le \sqrt{3} x \}$$

(4)
$$R = \{(x,y) | 1 \le x^2 + y^2 \le 9, x \le y \le \sqrt{3} x \}$$

9. 다음 부등식의 영역을 좌표평면 위에 나타내면?

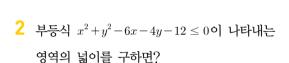
(1)
$$S = \{(x,y)|0 \le y \le x^3, \ 0 \le x \le 1\}$$

(2)
$$D = \{(x,y) | y = x^2$$
과 $y = x^3$ 으로 둘러싸인 영역 $\}$

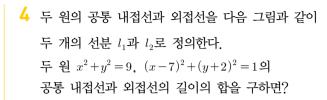
(3)
$$R = \{(x, y) | 0 \le y \le \sin x, \ 0 \le x \le \pi\}$$

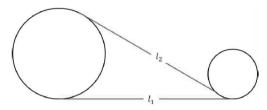
답 1. 4, $2\sqrt{6}$ 2. (1) 초점 : $(\pm\sqrt{5},0)$, 장축 : 6, 단축 : 4 (2) 초점 : $(0,\pm2\sqrt{3})$, 장축 : 8, 단축 : 4 3. $\frac{25}{2}\sqrt{3}\pi$ 4. (1) 초점 : $(\pm5,0)$, 꼭지점의 좌표 : $(\pm4,0)$, 그림 생략 (2) 초점 : $(0,\pm\sqrt{34})$, 꼭지점의 좌표 : $(0,\pm3)$, 그림 생략 5. (1) $y=\pm2x$ (2) $y=\pm\frac{2}{\sqrt{5}}x$ 6. (1) 1<x<5 (2) $-1\le x\le 2$ (3) x<1 또는 x>3 (4) $x<-\frac{5}{3}$ 또는 x>3 7. 그림 생략 8. 그림 생략 9. 그림 생략

1 원의 방정식 $x^2+y^2-4x+2y+1=0$ 의 중심좌표와 반지름을 구하면?



3 연립부등식 $\begin{cases} x^2+y^2 \leq 16 \\ (x+2)^2+y^2 \geq 4 \end{cases}$ 가 나타내는 영역의 넓이는?





5 다음 부등식의 영역을 나타내면?

(1)
$$y \le x + 1$$

(2)
$$3x - y - 9 < 0$$

(3)
$$y < \frac{1}{3}x^2$$

수열과 급수

1 수열

일정한 규칙에 따라 수를 차례로 나열한 것을 수열이라 한다. 또한 수열을 이루고 있는 각각의 수를 수열의 항이라 한다. 수열을 $a_1, a_2, a_3, \cdots, a_n, \cdots$ 으로 나타낼 때, 제 n항을 일반항이라 한다. 이 때. a_1 을 초항이라 한다.

첫째항 둘째항 셋째항 넷째항 ... 제 n항 ... a_1 a_2 a_3 a_4 ... a_n (일반항)

1) 등차수열

첫째항부터 차례로 일정한 수를 더하여 만들어지는 수열을 등차수열이라 하고, 그 일정한 수를 공차라고 한다.

① 공차가 d인 등차수열 $\{a_n\}$ 에서 a_n 과 a_{n+1} 은 다음 같은 관계가 성립한다.

$$a_{n+1}-a_n=d$$
 (단, $n=1,\ 2,\ 3,\ \cdots)$

② 첫째항이 a_1 이고, 공차가 d인 등차수열의 일반항 a_n 은 다음과 같다.

$$a_n = a_1 + (n-1)d$$

③ 등차수열의 합

등차수열의 첫째항부터 제 n항까지의 합을 S_n 이라고 하면 다음과 같다.

- ① 첫째항 a_1 와 끝항 l이면 $S_n = \frac{n(a_1 + l)}{2}$ 이다.
- ① 첫째항 a_1 와 공차 d이면 $S_n = \frac{n\{2a_1 + (n-1)d\}}{2}$ 이다.

- 1. 다음 수열의 일반항 a_n 을 구하면?
- (1) 1, 4, 9, 16, 25, ...

(2) $\frac{1}{3}$, $\frac{1}{5}$, $\frac{1}{7}$, $\frac{1}{9}$, $\frac{1}{11}$, ...

(3) 1, 8, 27, 64, ...

 $(4) \ 1 \cdot 2, \ 2 \cdot 3, \ 3 \cdot 4, \ 4 \cdot 5, \ \cdots$

(5) -1, 1, -1, 1, \cdots

(6) $\frac{3}{1 \cdot 2}$, $\frac{4}{2 \cdot 3}$, $\frac{5}{3 \cdot 4}$, $\frac{6}{4 \cdot 5}$, ...

- **2.** 다음 등차수열의 일반항 a_n 을 구하면?
- (1) 4, 6, 8, 10, 12, ...

(2) 1, 4, 7, 10, 13, ...

3. 세 개의 수 3k, $2k^2+1$, 7k-1가 주어진 순서로 등차수열을 이룰 때, 모든 k값들의 합을 구하면?

2) 등비수열

첫째항부터 시작하여 차례로 일정한 수를 곱하여 얻어지는 수열을 등비수열이라 하고, 그 일정한 수를 공비라고 한다.

① 등비가 r인 등비수열 $\{a_n\}$ 에서 a_n 과 a_{n+1} 은 다음 같은 관계가 성립한다.

$$\frac{a_{n+1}}{a_n} = r$$
 (단, $n = 1, 2, 3, \cdots$)

② 첫째항이 a_1 , 공비가 r인 등비수열의 일반항 a_n 은 다음과 같다.

$$a_n=a_1\,r^{n\,-\,1}$$

③ 등비수열의 합

첫째항이 a_1 . 공비가 r인 등비수열의 첫째항부터 제 n항까지의 합 S_n 은 다음과 같다.

①
$$r \neq 1$$
 일 때, $S_n = \frac{a_1(1-r^n)}{1-r}$ 이다.

① r=1 일 때, $S_n=na_1$ 이다.

4. 등비수열 $\{a_n\}$ 이 다음과 같을 때, 일반항을 구하면?

(1) 2. 6. 18. 54. ...

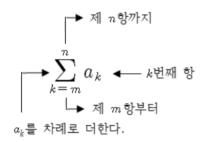
(2) 4, 8, 16, 32, ...

5. 공비가 양수인 등비수열이 있다. 제 3항과 5항의 합이 10 . 제 4항과 6항의 합이 20일 때 a,은?

1) 급수

일정한 규칙이 있는 수열 $\{a_n\}$ 에 대하여 첫째항부터 제 n항까지의 합을 S_n 이라 하자.

이 때, 합의 기호는 \sum 으로 나타내며 \sum 은 '시그마(Sigma)'라고 읽는다.



$$S_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{k=1}^n a_k = \sum_{i=0}^{n-1} a_{i+1}$$

2) 급수 Σ 의 기본성질

① 상수배의 성질 : $\sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k$

② 상수의 성질 : $\sum_{k=1}^{n} c = nc$

③ 합과 차의 성질 : $\sum_{k=1}^{n} (a_k \pm b_k) = \sum_{k=1}^{n} a_k \pm \sum_{k=1}^{n} b_k$

 \sum 가 포함된 식의 계산에서 다음과 같은 등식은 성립하지 않음에 주의한다.

3) 자연수의 거듭제곱의 합

①
$$1+2+3+\cdots+n=\sum_{k=1}^{n}k=\frac{n(n+1)}{2}$$

②
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

(3)
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left\{\frac{n(n+1)}{2}\right\}^2$$

6. 다음 합을 기호 \sum 를 써서 나타내면?

$$(1)$$
 $3+3+3+3+3$

$$(2) 2+4+6+\cdots+20$$

(3)
$$1+5+9+\cdots+45$$

(4)
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

(5)
$$2+4+8+\cdots+2^n$$

(6)
$$\frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \dots + \frac{n}{n^2+n^2}$$

7. 다음 합을 기호 \sum 를 쓰지 않고 나타내면?

(1)
$$\sum_{k=1}^{5} 3k$$

(2)
$$\sum_{k=1}^{5} 3$$

(3)
$$\sum_{k=1}^{n} (-1)^k \frac{1}{k2^k}$$

(4)
$$\sum_{k=0}^{n} \frac{(-1)^k}{2^{2k} k!}$$

8. 다음 급수의 값을 계산하면?

(1)
$$\sum_{k=1}^{10} \frac{1}{k(k+2)}$$

(2)
$$\sum_{k=1}^{10} \frac{1}{\sqrt{k+1} + \sqrt{k+3}}$$

답 1. (1) $a_n=n^2$, n은 자연수 (2) $a_n=\frac{1}{2n+1}$, n은 자연수 (3) $a_n=n^3$, n은 자연수 (4) $a_n=n(n+1)$, n은 자연수 $(5) \ a_n = (-1)^n, \ n \in \ \mathrm{TMCP} \quad (6) \ a_n = \frac{n+2}{n(n+1)}, \ n \in \ \mathrm{TMCP} \quad \ \ 2. \ (1) \ a_n = 2n+2, \ n \in \ \mathrm{TMCP} \quad (2) \ a_n = 3n-2, \ n \in \ \mathrm{TMCP} \quad (3) = 2n+2, \ n \in \ \mathrm{TMCP} \quad (4) = 2n+2, \ n \in$ 3. $\frac{5}{2}$ 4. (1) $a_n = 2 \times 3^{n-1}$, n은 자연수 (2) $a_n = 2^{n+1}$, n은 자연수 5. $a_n = 2^{n-2}$, n은 자연수 6. (1) $\sum_{k=1}^5 3$ (2) $\sum_{k=1}^{10} 2k$

(3)
$$\sum_{k=1}^{12} 4k - 3$$
 (4) $\sum_{k=1}^{n} \frac{1}{k}$ (5) $\sum_{k=1}^{n} 2^{k}$ (6) $\sum_{k=1}^{n} \frac{n}{n^{2} + k^{2}}$ 7. (1) $3 + 6 + 9 + \dots + 15$ (2) 30

$$(3) \ -\frac{1}{2} + \frac{1}{2 \times 2^2} - \frac{1}{3 \times 2^3} + \cdots + \frac{(-1)^n}{n \times 2^n} \quad (4) \ -1 + \frac{1}{2^4 \times 2!} - \frac{1}{2^6 \times 3!} + \cdots + \frac{(-1)^n}{2^{2n} \times n!} \qquad 8. \ (1) \ \frac{175}{264} \quad (2) \ \sqrt{2} - \sqrt{3} - \sqrt{13} + \cdots + \frac{(-1)^n}{n \times 2^n} + \cdots + \cdots$$

1 다음 등차수열의 일반항 a_n 을 구하면?

$$(1)$$
 -7 , -4 , -1 , 2 , 5 , \cdots

(2)
$$1, -\frac{1}{2}, -2, -\frac{7}{2}, -5, \dots$$

2 등차수열 $\{a_n\}$ 에서 $a_6+a_{15}=61,\ a_8+a_{16}=70$ 일 때, a_{31} 의 값은?

3 삼차방정식 $x^3 - 3x^2 - 6x + k = 0$ 이 세 근이 등차수 열을 이룰 때, 상수 k의 값은?

4 다음 등비수열의 일반항 a_n 을 구하면?

(1) 4, 2, 1,
$$\frac{1}{2}$$
, ...

(2)
$$\sqrt{2}$$
, -1 , $\frac{1}{\sqrt{2}}$, $-\frac{1}{2}$, ...

- 5 공비가 양수인 등비수열 $\{a_n\}$ 에서 $a_2 + a_4 = 10$, $a_4 + a_6 = 40$ 일 때, 일반항 a_n 과 첫째항부터 제 n 항까지의 합 S_n 을 구하면?
- - (2) $\sum_{i=3}^{7} 3^i$

(1) $\sum_{k=1}^{n} k(k+2)$

(3) $\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \left(\frac{1}{3}\right)^k$

7 다음 합을 기호 \sum 를 쓰지 않고 나타내면?

(4) $\sum_{k=1}^{n} \frac{4^k}{k}$

6 다음을 수열의 합을 시그마로 표현하면?

(1)
$$1+3+5+7+9$$

(2)
$$n\left(\frac{1}{n^2+1^2}+\frac{2}{n^2+2^2}+\cdots+\frac{n}{n^2+n^2}\right)$$

(3)
$$\frac{1}{2} + \frac{1}{2 \times 2^2} + \frac{1}{3 \times 2^3} + \dots + \frac{1}{n \times 2^n}$$

8 다음 급수를 계산하면?

(1)
$$\sum_{k=2}^{10} \frac{2}{(k-1)k}$$

(2)
$$\sum_{k=1}^{10} \frac{90}{(4k+1)(4k+5)}$$

(3)
$$\sum_{k=1}^{20} \frac{1}{\sqrt{k-1} + \sqrt{k}}$$

(4)
$$\sum_{k=2}^{n} \ln \left(1 - \frac{1}{k^2} \right)$$

Мето

PART

기초미적분

CHAPTER 05 함수와 미분

CHAPTER 06 부정적분 및 정적분

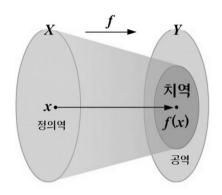
CHAPTER 07 편미분 및 중적분

함수와 미분

1 함수

1) 함수의 정의 및 용어

변화하는 두 양 x,y에 대하여 변수 x의 값이 하나 정해지면 그에 따라 변수 y의 값이 하나씩 정해지 는 관계가 있을 때, 이 관계를 y = x의 함수라 하며 기호로 y = f(x)와 같이 나타낸다. 이 때, x,y와 같이 변화하는 여러 가지 값을 가지는 문자를 변수라 하며, 보통 x를 독립변수, y를 종속변수라 한다. 만약 두 변수 x,y의 함수 z가 z=f(x,y)의 꼴로 주어질 때는 x,y가 독립변수, z가 종속변수이다.



두 집합 X. Y에 대해서 X의 각 원소 x에 Y의 원소 y가 하나씩만 대응할 때. 이 대응을 X에서 Y로의 함수라 하고 이것을 $f: X \to Y$ 로 기호화 하여 나타낸다.

함수 y = f(x)에서 x의 값에 따라 결정되는 y의 값. 즉, f(x)를 x의 함숫값이라고 한다.

함수 $f: X \to Y$ 에서 집합 X을 정의역. 집합 Y를 공역. 함숫값 전체의 집합 $\{f(x)|x \in X\}$ 을 치역 이라 한다.

2) 양함수와 음함수

수학에서 양함수(explicit function)라. 종속변수 없이 독립변수들의 식만으로 표현되는 함수를 말한다. 즉, 독립변수가 하나일 경우, 양함수는 y=f(x) 형태가 된다.

역으로, 음함수(implicit function)는 종속변수가 독립변수와 분리되지 않은 하나의 관계식으로 주 어진 함수를 말한다. 독립변수가 하나일 경우, 음함수는 f(x,y)=0 형태가 된다.

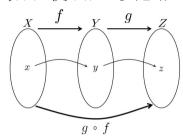
만약 독립변수가 두 개일 경우, 음함수는 f(x,y,z)=0 형태가 된다.

음함수를 종속변수에 대해 식을 정리하여 양함수로 만들 수 있는 경우도 있지만, 그렇지 못한 경우도 있다. 이 경우 다가함수(multivalued function)가 된다. 이것은 실질적으로 함수의 정의에서 벗어나 므로 함수가 아니지만 함수처럼 취급하면 편리한 경우가 많으므로 통상 '함수'라는 용어를 쓰고 있다.

3) 합성함수

합성함수 : 두 함수 $f\colon X\to Y,\ g\colon Y\to Z$ 가 주어졌을 때, X의 임의의 원소 x에 Z의 원소 g(f(x))를 대 응시키는 새로운 함수를 f와 g의 합성함수라고 하고 $g\circ f$ 로 나타낸다.

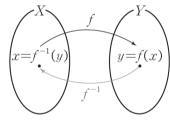
그리고 $g \circ f(x) = q(f(x))$ 또는 $(g \circ f)(x) = q(f(x))$ 로 정의한다.



4) 역함수

① 역함수의 정의

함수 $f: X \to Y$ 가 전단사함수일 때, Y의 각 원소에 y = f(x)를 만족하는 X의 원소 x를 대응시키는 Y에서 X로의 함수를 f의 역함수라 하고 $x = f^{-1}(y)$ 로 나타낸다.



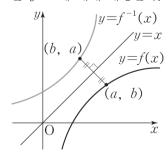
 $\stackrel{\text{\tiny Z}}{=}$, $y = f(x) \Leftrightarrow x = f^{-1}(y)$

② 역함수를 구하는 방법

- ① y = f(x)을 x = f(y)로 바꾼다. 즉, x와 y를 서로 바꾼다.
- ① x = f(y)을 $y = f^{-1}(x)$ 으로 나타낸다.
- \Box y에 대하여 정리하여 y=g(x)의 형태로 나타낸다.

③ 역함수 성질

- $(f^{-1})^{-1} = f$
- $\bigcirc y = f(x)$ 와 $y = f^{-1}(x)$ 의 그래프는 y = x에 대해 대칭한다.



5) 삼각함수

① 라디안(radian)

일상생활에서 많이 쓰는 각도의 표현 '60분법'만으로는 수학과 공학에서 다루는 모든 각도의 표 현이 불편하게 느껴진다. 그래서 만들어진 새로운 각도(평면각)의 단위이며 호도라고도 부르고 기호는 rad라고 표기하며 특히 삼각함수를 다룰 때의 모든 각도의 표현은 라디안으로 단위를 고 쳐서 사용하기로 한다. 다음 표는 각과 라디안 사이의 관계를 나타낸다.

。 (도)	0 °	30 °	45 °	60 °	90 °	135 °	180 °	270 °	360 °
radian	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{3\pi}{2}$	2π

② 삼각함수

삼각함수(trigonometry function)는 삼각형(trigon). 측정(metro)의 그리스어의 합성어이다. 삼각함수는 천체관측이나, 항해술, 물리학 등 많은 분야뿐만 아니라 미적분학과 공학수학의 중요한 수학적 도구이다. 동경 OP가 x 축의 양의 방향과 이루는 각을 θ 라 하면, θ 에 대한 삼각함수는 다음과 같이 정의한다.

$$\sin\theta = \frac{y}{r} \qquad \csc\theta = \frac{1}{\sin\theta}$$

$$\cos\theta = \frac{x}{r} \qquad \sec\theta = \frac{1}{\cos\theta}$$

$$\tan\theta = \frac{y}{x} \qquad \cot\theta = \frac{1}{\tan\theta}$$

③ 특수 예각의 삼각비의 값

	0 °	30°	45°	60°	90 °
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞

④ 삼각함수의 기본공식

$$\Box \cot \theta = \frac{\cos \theta}{\sin \theta}$$

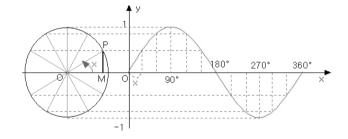
$$\exists 1 + \tan^2 \theta = \sec^2 \theta$$

⑤ 삼각함수의 기본정리

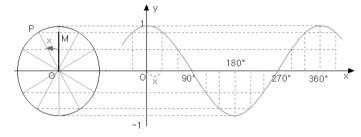
- ① 덧셈정리
 - (a) $\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$
 - (b) $\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$
- € 2배각 공식
 - (a) $\sin 2\alpha = 2\sin \alpha \cos \alpha$
- (b) $\cos 2\alpha = \cos^2 \alpha \sin^2 \alpha$ (c) $\tan 2\alpha = \frac{2\tan \alpha}{1 \tan^2 \alpha}$
- © 반각 공식
 - (a) $\sin^2 \frac{\alpha}{2} = \frac{1 \cos \alpha}{2}$ (b) $\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$

6) 삼각함수의 그래프

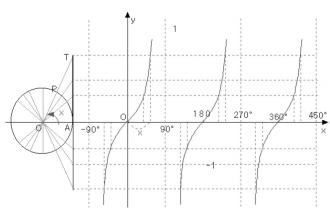
- ① $y = \sin x$ 의 그래프
 - ⊙ 정의구역 : 모든 실수
 - 치역 : -1 ≤ y ≤ 1
 - © 주기 : 360°(또는 2 π)



- ② $y = \cos x$ 의 그래프
 - ⊙ 정의구역 : 모든 실수
 - ⑤ 치역 : -1 ≤ y ≤ 1
 - © 주기 : 360°(또는 2π)



- ③ $y = \tan x$ 의 그래프
 - \bigcirc 정의구역 : $\left(n\pi + \frac{\pi}{2}\right)$ 가 아닌 모든 실수 (n은 정수)
 - 치역: 모든 실수
 - © 주기 : 180°(또는 π)



7) 역삼각함수

① 역삼각함수의 정의

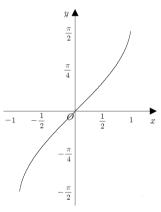
삼각함수들은 정의역 전체에서 일대일대응하지 않으므로 역함수를 갖지 않는다. 그러나 정의역 을 축소하여 역함수를 정의 할 수 있다. 이 때, 삼각함수의 역함수를 통틀어 역삼각함수라 한다. 예를 들어, $y = \sin x$ 는 폐구간 $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ 에서는 단조증가함수이므로 역함수가 존재한다.

$$y = \sin x$$
의 역함수 $\Leftrightarrow x = \sin y \Leftrightarrow y = \sin^{-1} x$

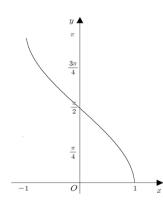
이 때, $y = \sin^{-1}x$ 을 역사인함수라 하고 arcsine x 라고 읽는다. 같은 방법으로 다른 삼각함수도 정의역을 일대일대응함수가 되게 제한해 주면 다음과 같이 이 함수들의 역함수를 정의할 수 있다.

역삼각함수	정의역	치역
$y = \sin^{-1}x$	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
$y = \cos^{-1}x$	$-1 \le x \le 1$	$0 \le y \le \pi$
$y = \tan^{-1}x$	$-\infty < x < \infty$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$

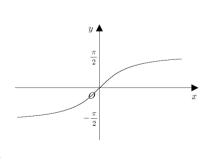
② 역삼각함수의 그래프



$$\bigcirc y = \cos^{-1}x$$
의 그래프



① $y = \sin^{-1} x$ 의 그래프 ① $y = \cos^{-1} x$ 의 그래프 ② $y = \tan^{-1} x$ 의 그래프



8) 지수함수 및 로그함수

① 지수법칙

a>0, b>0 인 실수이고, i을 정수, j를 양의 정수 그리고 m, n을 유리수라고 할 때

$$\bigcirc$$
 $a^0 = 1$ (단, $a \neq 0$)

$$\bigcirc a^{-j} = \frac{1}{a^j}$$
 (단, $a \neq 0$)

$$\stackrel{i}{\bigcirc} a^{\frac{i}{j}} = {}^{j}\sqrt{a^{i}}$$
 (단, j 가 짝수일 때는 $a > 0$)

$$\textcircled{2} \ a^m \times a^n = a^{m+n}$$

$$\bigcirc$$
 $a^m \div a^n = a^{m-n}$

$$(ab)^n = a^n b^n$$

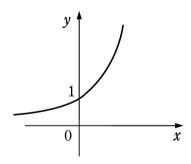
② 지수함수

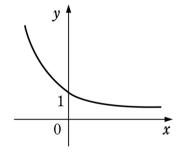
지수가 실수로 확장됐을 때에는 더 이상 거듭제곱의 원래 뜻인 'a를 n번 곱한다.'는 뜻은 의미가 없고, 오직 규칙만이 존재한다. 또한 실수 x에 대해 a^x 가 정의되므로 $y=a^x$ 을 수직선에 곡선으로 표현할 수 있으며 극한이나 미분, 적분을 적용할 수 있다.

특히 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e = 2.718 \cdots$ 라 할 때, 공학에서 지수함수는 $f(x) = e^x$ 를 주로 이용한다.

$$y = e^x = \exp(x)$$

$$y = e^{-x} = \exp(-x)$$





③ 로그법칙

임의의 양수 x에 대하여 $x=a^y$ (a>0, $a\neq 1$)을 만족시키는 실수 y은 오직 하나만이 존재한다. 이 지수 y을 a를 믿으로 하는 x의 로그라 하고. $y = \log_a x$ 으로 나타낸다.

특히. e 를 밑으로 하는 로그를 $y = \log_e x = \log x = \ln x$ 로 나타내며 이 로그를 자연로그라 한다.

a > 0 . $a \ne 1$. M > 0, N > 0 이라 할 때.

- $\bigcirc \log_a a = 1, \log_a 1 = 0$
- © $\log_a \frac{M}{N} = \log_a M \log_a N$ ② $\log_a M^n = n \log_a M$ (n: 실수)

M>0, N>0 이라 할 때.

 $\Box \ln MN = \ln M + \ln N$

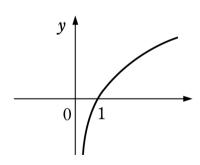
 \bigcirc $e^{\ln M} = M$

④ 로그함수

로그함수는 $f(x) = \log_{e} x = \log x = \ln x$ (자연로그)를 이용한다.

이 때, $f(x) = e^x$ 와 $g(x) = \ln x$ 는 서로 역함수의 관계를 가지고 있다.

$$y = \ln x$$



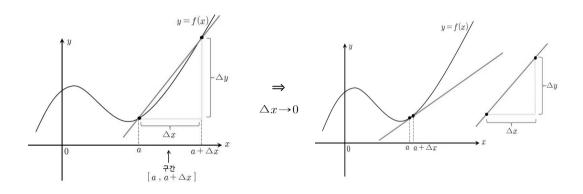
2 미분 (Differential)

1) 미분의 기호 및 정의

최초로 미분을 생각해낸 사람은 영국의 물리학자, 천문학자 뉴턴과 독일의 철학자, 수학자 라이프 니츠이다. 두 사람의 미분으로의 접근방식은 달랐는데 뉴턴은 역학적인 개념으로 접근하였고, 라이 프니츠는 기하학적 의미로 접근했다. 미분 탄생이 두 가지 아이디어로부터 시작했기 때문에 미분이 갖는 의미도 크게 두 가지로 속도(변화율)와 접선의 기울기의 의미를 갖게 된다.

미분의 기호 표현 또한 이론을 발견하고 정리해서 창시한 사람이 두 사람이기 때문에 뉴턴이 사용한 y'과 라이프니츠가 사용한 $\frac{dy}{dx}$ 두 가지 방법으로 표기하게 된다.

함수 f(x)에서 x의 값이 a에서 $a+\Delta x$ 까지 변할 때, 즉 x가 어떤 값 a에서 Δx 만큼 변화를 할 때, y가 Δy 만큼 변화한다고 하면 이 변화량의 비율 $\frac{\Delta y}{\Delta x}$ 를 구간 $\left[a,a+\Delta x\right]$ 에서의 평균변화율이라하고, Δx 가 한없이 0에 가까워질 때 $\frac{\Delta y}{\Delta x}$ 가 유한확정인 극한값을 가지면 이것을 함수 f(x)의 x=a에서의 (순간) 변화율 또는 미분계수라고 하고, 미분계수를 수학적으로 표현하면 $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$ 이다.



그림과 같이 미분계수의 기하학적 의미는 함수 y=f(x)의 그래프 위의 점 (a,f(a))에서 접선의 기울기이다. 미분계수가 접선의 기울기라는 사실은 함수의 그래프를 바탕으로 한 모든 이론에 중요한 역할을 한다.

미분계수를 나타내는 수학적 표현이 다음과 같이 다양하다.

- ① $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$ (x값의 변화량을 Δx 로 표현)
- ② $\lim_{h \to 0} \frac{f(x+h) f(x)}{h}$ (x값의 변화량을 h로 표현)
- ③ $\lim_{b \to a} \frac{f(b) f(a)}{b a}$ (x값의 변화량을 b a로 표현)

그리고 함수 y=f(x)의 각 점마다 미분계수가 존재한다면 $\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$ 은 하나의 함수가 된다. 미분의 정의로부터 만들어진 함수를 도함수라 부르며 f'(x)로 나타낸다.

즉,
$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = f'(x)$$
을 도함수의 정의라고 한다.

2) 미분법

- ① 도함수의 기본법칙
 - \bigcirc 모든 x에 대하여 f(x)=c (c는 상수) 이면 f'(x)=0 이다.
 - \bigcirc n이 유리수에 대하여 $f(x)=x^n$ 이면 $f'(x)=nx^{n-1}$ 이다
 - © $a, b \vdash$ 상수일 때 $f(x) = aq(x) \pm bh(x)$ 이면 $f'(x) = aq'(x) \pm bh'(x)$ 이다.
 - ② f(x) = q(x) h(x) 이면 f'(x) = q'(x) h(x) + q(x) h'(x) 이다.

①
$$f(x) = \frac{g(x)}{h(x)}$$
 이번 $f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{h^2(x)}$ 이다.

- ② 여러 함수들의 도함수
 - $\bigcirc \frac{d}{dx}\sin x = \cos x$
 - $\bigcirc \frac{d}{dx}\cos x = -\sin x$
 - \bigcirc $\frac{d}{dx} \tan x = \sec^2 x$

 - $\triangle \frac{d}{dx}e^x = e^x$
 - \bigcirc $\frac{d}{dx} \ln x = \frac{1}{x}$
 - $\ensuremath{ \begin{tabular}{ll} \hline \ensuremath{ \ensuremath{ \otimes }} } a>0 \;,\;\; a\neq 1 \;\; \ensuremath{ \begin{tabular}{ll} \hline \ensuremath{ \otimes } } \\ \hline \ensuremath{ \begin{tabular}{ll} \hline \ensuremath{ \ensuremath{ \otimes }} } a >0 \;,\;\; a\neq 1 \;\; \ensuremath{ \begin{tabular}{ll} \hline \ensuremath{ \otimes }} \\ \hline \ensuremath{ \ensuremath{ \ensuremath{ \otimes }} } \\ \hline \ensuremath{ \ensuremath{ \otimes }} \\ \hline \ensuremath{ \ensuremath{ \otimes }} \\ \hline \ensuremath{ \ensuremath{ \ensuremath{ \otimes }} } \\ \hline \ensuremath{ \ensuremath{ \ensuremath{ \ensuremath{ \otimes }} } \\ \hline \ensuremath{ \ensuremath{ \ensuremath{ \ensuremath{ \otimes }} } \\ \hline \ensuremath{ \ensuremath{ \ensuremath{ \ensuremath{ \otimes }} } \\ \hline \ensuremath{ \ensuremath{$
 - 3 a > 0, $a \ne 1$, x > 0 2 1 $\dfrac{d}{dx} \log_a x = \dfrac{1}{x \ln a}$

(1)
$$f(x) = (x^2+1)(x-1), x=2$$

(1)
$$f(x) = (x^2 + 1)(x - 1), x = 2$$
 (2) $f(x) = e^x \cos x, x = \frac{\pi}{2}$

(3)
$$f(x) = \cos x \sin x$$
, $x = \frac{\pi}{4}$

(4)
$$f(x) = \sqrt{x} \ln x$$
, $x = 1$

(5)
$$f(x) = \frac{x}{\tan x}, \ x = \frac{\pi}{4}$$

(6)
$$f(x) = \frac{x^2 - 4x + 4}{x^2 + 2x + 2}, \quad x = 0$$

(7)
$$f(x) = \frac{\sqrt{x}}{1+x^2}$$
, $x=1$

(8)
$$f(x) = \frac{x}{\ln x}$$
, $x = e^2$

(9)
$$f(x) = \frac{\cos x - 1}{\sin x}$$
, $x = \frac{\pi}{4}$

(10)
$$f(x) = \frac{x \cos x}{1 + e^x}$$
, $x = 0$

3) 합성함수의 미분법

미분의 기호는 Chain-Rule에 의하여 다음과 같이 나타낼 수 있다.

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

따라서 y=f(u), u=g(x)가 미분가능할 때 $y'=\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}=f'(g(x))\cdot g'(x)$ 이다.

2. 다음 함수의 y'을 구하면?

(1)
$$y = \sin(3x+2)$$

$$(2) \quad y = \tan(x^2)$$

$$(3) \ \ y = \cos\left(\ln x\right)$$

(4)
$$y = (x^3 + 2x)^{\frac{5}{2}}$$

(5)
$$y = \sqrt[3]{3x+2}$$

(6)
$$y = \tan^2 x$$

(7)
$$y = \cos^5 x$$

(8)
$$y = \sqrt{\ln x}$$

$$(9) \ \ y = \sqrt{\tan x}$$

$$(10) \ \ y = x\sqrt{\sin x}$$

$$(11) \ \ y = e^{\tan x}$$

$$(12) \ y = e^{3x} \sin x$$

$$(13) \ \ y = e^{x \ln x}$$

$$(14) \ \ y = e^{\frac{\ln x}{x}}$$

$$(15) \ \ y = \ln(\tan 2x)$$

(16)
$$y = \ln(x^2 + 5)$$

(17)
$$y = \ln(e^x + e^{-x})$$

$$(18) \ y = \ln(x \sin x)$$

(19)
$$y = (\ln x)^2$$

(20)
$$y = \log_2(5x - 3)$$

$$(21) \ y = 2^{\sin x}$$

(22)
$$y = \sin^{-1}(x^3)$$

$$(23) \ y = \tan^{-1}(\sin x)$$

(24)
$$y = \cos^2(3x - 1)$$

(25)
$$y = \sec^3(2x+5)$$

$$(26) \ y = \sin(\cos(\tan x))$$

$$(27) \ \ y = \sqrt{\sec(x^3)}$$

$$(28) \ y = e^x \sin(\ln x)$$

$$(29) y = \frac{\sin(e^x)}{x}$$

$$(30) \ y = e^{x \cos x} + \ln(\tan x)$$

4) 로그 미분법

미분계산을 효율적으로 다루기 위해서 $f(x)^{g(x)}$ 형태는 다음과 같이 식을 변형하여 미분한다.

$$f(x)^{g(x)} = e^{\ln f(x)^{g(x)}} = e^{g(x)\ln f(x)}$$

3. 다음 함수의 주어진 점에서의 미분계수를 구하면?

(1)
$$y = (\ln x)^{3x}$$
, $(e,1)$

(2)
$$y = (x^2 + 1)^x$$
. (2, 25)

(3)
$$y = x^{\ln x}$$
, (e, e)

(4)
$$y = x^{\frac{1}{x}}$$
, (1,1)

5) 음함수 미분법

미적분학에서, 음함수의 미분이란 Chain-rule을 이용한 미분법을 말한다. 음함수를 양함수로 바꾸 지 않고 미분한 다음 $\frac{dy}{dx}$ 를 계산할 수 있다. 이 결과는 양함수로 바꾼 후에 통상적인 미분을 시행한 결과와 같지만 계산이 수월하다는 장점이 있다. f(x,y)=0에서 $y \equiv x$ 의 함수로 생각하고, 주어진 방정식 f(x,y)=0의 양변을 x에 관하여 미분한 다음 y'에 대하여 정리한다.

이때
$$\frac{df(y)}{dx} = \frac{df(y)}{dy} \frac{dy}{dx}$$
을 이용한다.

다음 각 곡선에 대해서 주어진 점에서의 접선의 기울기를 구하면?

(1)
$$x^3 + y^3 = 9$$
, (1,2)

(2)
$$y + \sqrt{x+y} = x$$
, (3,1)

(3)
$$y^2(2-x) = x^3$$
, (1,1)

(4)
$$y^4 = y^2 - x^2$$
, $\left(\frac{\sqrt{3}}{4}, \frac{1}{2} \right)$

(5)
$$x^3 - \sin y - x^2 y - 1 = 0$$
 (1,0)

(6)
$$x^5 = 1 + e^y - xe^{y^2}$$
. (1,0)

5. 다음 각 곡선에 대해서 주어진 점에서의 접선의 기울기를 구하면?

(1)
$$y = \frac{(x+2)^3}{x^4(x-1)^2}$$
, (2,4)

(2)
$$y = \frac{\tan^4 x}{\sin^3 x \cos 3x}$$
, $(\frac{\pi}{4}, -4)$

1. (1) 9 (2)
$$-e^{\frac{\pi}{2}}$$
 (3) 0 (4) 1 (5) $1-\frac{\pi}{2}$ (6) -4 (7) $-\frac{1}{4}$ (8) $\frac{1}{4}$ (9) $\sqrt{2}-2$ (10) $\frac{1}{2}$ 2. (1) $y'=3\cos(3x+2)$

(2)
$$y' = 2x \sec^2(x^2)$$
 (3) $y' = -\frac{\sin(\ln x)}{x}$ (4) $y' = \frac{5}{2}(x^3 + 2x)^{\frac{3}{2}} \times (3x^2 + 2)$ (5) $y' = \frac{1}{\sqrt[3]{(3x+2)^2}}$ (6) $y' = 2\tan x \sec^2 x$

(7)
$$y' = -5\cos^4 x \sin x$$
 (8) $y' = \frac{1}{2x\sqrt{\ln x}}$ (9) $y' = \frac{\sec^2 x}{2\sqrt{\tan x}}$ (10) $y' = \sqrt{\sin x} + \frac{x \cos x}{2\sqrt{\sin x}}$ (11) $y' = e^{\tan x} \sec^2 x$

$$(12) \ \ y' = e^{3x} (3\sin x + \cos x) \quad (13) \ \ y' = e^{x\ln x} (\ln x + 1) \quad (14) \ \ y' = e^{\frac{\ln x}{x}} \left(\frac{1 - \ln x}{x^2}\right) \quad (15) \ \ y' = \frac{2\sec^2 2x}{\tan 2x} \quad (16) \ \ y' = \frac{2x}{x^2 + 5}$$

$$(17) \ \ y' = \frac{e^x - e^{-x}}{e^x + e^{-x}} \ \ (18) \ \ y' = \frac{1}{x} + \cot x \ \ \ (19) \ \ y' = \frac{2\ln x}{x} \ \ \ (20) \ \ y' = \frac{5}{(5x - 3)\ln 2} \ \ \ (21) \ \ y' = 2^{\sin x} \cos x \ln 2 \ \ \ (22) \ \ y' = \frac{3x^2}{\sqrt{1 - x^6}} + \frac{3x^2}{\sqrt{1 - x^6$$

$$(23) \ \ y' = \frac{\cos x}{1+\sin^2 x} \quad (24) \ \ y' = -6\cos \left(3x-1\right)\sin \left(3x-1\right) \quad (25) \ \ y' = 6\sec^3 (2x+5)\tan \left(2x+5\right)$$

(26)
$$y' = -\cos(\cos(\tan x))\sin(\tan x)\sec^2 x$$
 (27) $y' = \frac{3x^2\sec(x^3)\tan(x^3)}{2\sqrt{\sec(x^3)}}$ (28) $y' = e^x\sin(\ln x) + \frac{e^x\cos(\ln x)}{x}$ (29) $y' = \frac{x e^x\cos(e^x) - \sin(e^x)}{x^2}$ (30) $y' = e^x\cos(\cos x - x\sin x) + \frac{\sec^2 x}{\tan x}$ 3. (1) 3 (2) $25\ln 5 + 40$ (3) 2 (4) 1

(29)
$$y' = \frac{x e^x \cos(e^x) - \sin(e^x)}{x^2}$$
 (30) $y' = e^{x \cos x} (\cos x - x \sin x) + \frac{\sec^2 x}{\tan x}$ 3. (1) 3 (2) $25 \ln 5 + 40$ (3) 2 (4)

4. (1)
$$-\frac{1}{4}$$
 (2) $\frac{3}{5}$ (3) 2 (4) $\sqrt{3}$ (5) $\frac{3}{2}$ (6) 6 5. (1) -13 (2) -8

1 다음을 미분하면?

$$(1) \ \ y = 2\sqrt{x} + 2\ln x$$

$$(2) y = 3\sin x - \cos x$$

(3)
$$y = \frac{2}{x} + \frac{x}{2}$$

(4)
$$y = \frac{x^2 + 1}{\sqrt{x}}$$

$$(5) \ \ y = \frac{\tan x}{x}$$

$$(6) \ \ y = \frac{\sin x}{1 + \cos x}$$

(7)
$$y = (10x^2 - 4)^3$$

(8)
$$y = (2x^2 + 5x)^{\frac{3}{2}}$$

$$(9) \ y = \sin(2x)$$

$$(10) \ y = \sin \sqrt{x}$$

$$(11) \ y = \sin\left(1 - \frac{1}{x}\right)$$

(12)
$$y = \sin(\sin x)$$

(13)
$$y = \tan(2x^3 - 3x)$$

$$(14) \ y = \sin^2 x$$

(15)
$$y = \cos^3 x$$

$$(16) \ y = \sec^2 x$$

(17)
$$y = \sqrt{4 - x^2}$$

$$(18) \ y = \sqrt{\sin x}$$

(19)
$$y = x\sqrt{1-x}$$

(20)
$$y = e^{-x^2}$$

$$(21) \ y = e^{\sin x}$$

(22)
$$y = \ln(x^2 - 4)$$

$$(23) \ y = \ln\left(\frac{1}{\sin x}\right)$$

(24)
$$y = \ln\left(\frac{x^2 + 4}{3x - 5}\right)$$

$$(25) \ \ y = \ln\left(\frac{x^2}{x+1}\right)$$

(26)
$$y = \tan^2(3x)$$

(27)
$$y = \sin^2(2x+1)$$

$$(28) \ y = x\sin(2x)$$

$$(29) \ y = e^x \cos(2x)$$

(30)
$$y = xe^{-x} + e^{-3x^2}$$

$$(31) \ \ y = \frac{e^{2x}}{x}$$

(32)
$$y = \frac{\sin(2x)}{x^2}$$

$$(33) \ y = \frac{\sec(2x)}{x}$$

$$(34) \ \ y = \frac{\tan x}{e^{2x}}$$

(35)
$$y = x \ln x + e^{2x} + x \sin(2x)$$

(36)
$$y = x \cos(\ln x)$$

$$(37) \ y = e^{x \sin x} + \ln(\sin x)$$

$$(38) \ y = \ln(\sin 2x) + \frac{\sin 2x}{x}$$

$$(39) \ y = x e^{\sqrt{x}} + \sqrt{\sin 2x}$$

$$(40) \ \ y = \cos(\sin 3x)$$

(41)
$$y = x \tan(\sqrt{x}) + x \tan(\frac{1}{x})$$

$$(42) \ \ y = \tan\left(\frac{x-1}{x+1}\right)$$

(43)
$$y = x^{\sin x} (x > 0)$$

$$(44) \ \ y = x^x (x > 0)$$

2 함수
$$f(x) = \frac{1}{4}x^4 - \frac{1}{3}x^3 + \frac{a}{2}x^2 + 2x$$
에 대하여 $f'(2) = 4$ 일 때, 상수 a 의 값을 구하면?

3 함수 $f(x) = (x^2 + 1)^5$ 에 대하여 f'(1)의 값은?

$$\frac{\textbf{4}}{\bullet} \text{ 함수 } f(x) = \frac{\cos x}{e^x + 1} 일 \text{ 때, } f'(0) 의 값을 구하면?$$

6 함수
$$f(x) = \frac{1 + \sec x}{\tan x}$$
 에 대하여 $f'\left(\frac{\pi}{3}\right)$ 의 값을 구하면?

$$\mathbf{5}$$
 함수 $f(x) = \frac{\sin x}{1 + e^x}$ 일 때, $f'(0)$ 의 값을 구하면?

7 함수
$$f(x) = x^3 \sin x + 3x^2 \cos x$$
 에 대하여 $f'\left(\frac{\pi}{2}\right)$ 의 값을 구하면?

8 함수
$$f(x) = \sin^3 x \cos 3x$$
 에 대하여 $f'\left(\frac{\pi}{2}\right)$ 의 값은?

10
$$3x^2 + 4y^2 = 60$$
일 때, $\frac{dy}{dx}$ 의 값은?

$$9 h(x) = x^{\sqrt{x}}$$
일 때, $h'(1)$ 의 값을 구하면?

11
$$y^4 = y^2 - x^2$$
일 때, $\frac{dy}{dx}$ 의 값은?

12
$$x^3 - \sin y - x^2 y - 1 = 0$$
 일 때, 점 (1,0) 에서 $\frac{dy}{dx}$ 를 구하면?

14 곡선
$$y^3 + x^2 - 2y = 4$$
때, 점 $(2, 0)$ 에서 $\frac{dy}{dx}$ 를 구하면?

13
$$x^2 + xy + y^2 - 3 = 0$$
일 때, 점 $(0, \sqrt{3})$ 에서 $\frac{dy}{dx}$ 를 구하면?

15 다음 각 곡선에 대해서 주어진 점에서의 $\frac{dy}{dx}$ 를 구하면?

(1)
$$y = \frac{(x-1)^2(x+1)}{(x+3)^3}$$

(2)
$$y = \frac{x^3}{(x-3)(x+2)^2}$$

부정적분 및 정적분

1 부정적분 및 정적분

적분은 미분의 역연산이다. 즉, 함수 f'(x)를 도함수로 하는 원시 함수 f(x)가 존재하며 원시 함수를 구하는 과정을 부정적분 이라 한다. 또한, f(x) 가 f'(x) 의 한 부정적분이면 다음과 같이 나타낸다.

$$\int f'(x) dx = f(x) + C \quad (C 는 임의의 상수)$$

① 미적분학의 기본정리 (Fundamental theorem of calculus) f(x)를 피적분함수 f'(x)의 부정적분 이라고 하면 다음과 같다.

$$\int_{a}^{b} f'(x) dx = [f(x)]_{a}^{b} = f(b) - f(a)$$

- ② 적분의 성질

- 1. 다음 부정적분을 구하면? or 정적분 값을 계산하면?
- $(1) \int \sin x dx \qquad (2) \int \cos x dx$
- (3) $\int \sec^2 x dx$

- (4) $\int \sin^2 \frac{x}{2} dx$
- (5) $\int \cos^2 \frac{x}{2} \, dx$
- (6) $\int \tan^2 x \, dx$
- (7) $\int_{0}^{\frac{\pi}{2}} \sqrt{1 + \cos 2x} \, dx$ (8) $\int_{0}^{1} x^3 + x 1 dx$ (9) $\int_{\frac{1}{2}}^{\frac{3}{2}} 2x^2 + x + 3 \, dx$

2 여러 가지 적분법

1) 치환적분법

부정적분을 구할 때, 변수를 다른 변수로 바꾸어 놓으면 편리할 때가 있다. 변수를 바꾸어 적분하는 것을 치환적분이라고 한다.

 $\int f'(g(x))g'(x)dx$ 에서 t=g(x)로 놓으면 $\int f'(g(x))g'(x)dx = \int f'(t)dt$ 이다.

또한, 치환적분법으로 구한 부정적분의 결과는 보통 처음의 변수로 바꾸어 나타낸다.

2. 다음 부정적분을 구하면? or 정적분 값을 계산하면?

$$(1) \int \frac{1}{x(\ln x)^2} dx$$

$$(2) \int_{e^2}^{e^4} \frac{dx}{x \ln x}$$

$$(3) \int_0^{\frac{\pi}{2}} \cos x \sqrt{1 + \sin x} \ dx$$

(4)
$$\int_{0}^{1} e^{x} \sqrt{1 + e^{x}} dx$$

$$(5) \int_{\frac{\sqrt{3}}{2}}^{1} \frac{x}{\sqrt{1-x^2}} dx$$

(6)
$$\int_0^1 \frac{x}{\sqrt[3]{x^2 + 1}} \, dx$$

(7)
$$\int_{0}^{\sqrt{3}} x \sqrt{x^2 + 1} \, dx$$

$$(8) \int_0^{\frac{\pi}{4}} \tan^6 x \sec^2 x \, dx$$

(9)
$$\int_{0}^{\frac{\pi}{8}} (\sin^{7}2x \cos^{2}x - \sin^{7}2x \sin^{2}x) dx$$
 (10)
$$\int_{0}^{\frac{\pi}{2}} \sin 2x \cos^{9}x dx$$

$$(10) \int_{0}^{\frac{\pi}{2}} \sin 2x \cos^9 x dx$$

$$(11) \int \cos(2x) \, dx$$

(12)
$$\int \sec^2(4x+1) dx$$

$$(13) \int e^{3x+2} dx$$

(14)
$$\int_{\frac{1}{2}}^{1} \frac{e^{-1/x}}{x^2} dx$$

$$(15) \int \sin(x+1) \, dx$$

(16)
$$\int_{1}^{2} \frac{2x+1}{x^{2}+x} dx$$

$$(17) \int_0^{\frac{\pi}{4}} \tan x \, dx$$

$$(18) \int_{0}^{\frac{\pi}{4}} \sec x \, dx$$

2) 부분적분법

적분은 미분연산의 역연산이므로 다음과 같은 생각을 할 수 있다. $f(x) \cdot g(x)$ 을 미분하면 f'(x)g(x) + f(x)g'(x) 이 된다. 반대로 f'(x)g(x) + f(x)g'(x)을 적분하면 $f(x) \cdot g(x)$ 이 된다. 즉, $\int f'(x)g(x)+f(x)g'(x)dx=f(x)\cdot g(x)$ 이다. 여기서 적분의 성질을 이용하여 $\int f'(x)g(x)dx + \int f(x)g'(x)dx = f(x)\cdot g(x)$ 정리하면 부분적분법이 만들어진다.

$$\int f'(x)g(x)dx = f(x) \cdot g(x) - \int f(x)g'(x)dx$$

치환적분 되지 않을 때, 피적분함수가 미분과 적분계산이 쉬운 함수의 곱으로 되어있을 때 사용하면 좋다.

$$(1) \int_0^{\frac{\pi}{2}} x \cos x \, dx$$

$$(2) \int_{1}^{e} x \ln x \, dx$$

$$(3) \int_0^\pi x \sin 2x \, dx$$

$$(4) \int_{1}^{e} \ln x \, dx$$

$$(5) \int_{1}^{e} (\ln x)^2 dx$$

(6)
$$\int_{0}^{1} x^{2}e^{2x} dx$$

$$(7) \int_{1}^{e} \frac{\ln x}{x^2} dx$$

(8)
$$\int_{0}^{\frac{\sqrt{\pi}}{2}} x^{3} \cos(x^{2}) dx$$

(9)
$$\int_{0}^{\pi} e^{-2x} \cos 2x \ dx$$

$$(10) \int_{1}^{e} \sin(\ln x) dx$$

3) 삼각치화법

- ① $\sqrt{a^2-x^2}$ 을 $x=a\sin\theta$ $\left(-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}\right)$ 으로 치환하면, $\sqrt{a^2-x^2} = \sqrt{a^2-a^2\sin^2\theta} = \sqrt{a^2\cos^2\theta} = a\cos\theta$ 이 되며. $dx = a\cos\theta d\theta$ 이다.
- ② $\sqrt{x^2-a^2}$ 을 $x=a\sec\theta$ $\left(0\leq \theta<\frac{\pi}{2},\; -\pi\leq \theta<-\frac{\pi}{2}\right)$ 으로 치환하면, $\sqrt{x^2-a^2} = \sqrt{a^2 \sec^2 \theta - a^2} = \sqrt{a^2 \tan^2 \theta} = a \tan \theta$ 이 되며, $dx = a \sec \theta \tan \theta d\theta$ 이다.
- ③ $\sqrt{x^2+a^2}$ 을 $x=a\tan\theta$ $\left(-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right)$ 으로 치환하면, $\sqrt{x^2+a^2} = \sqrt{a^2 \tan^2 \theta + a^2} = \sqrt{a^2 \sec^2 \theta} = a \sec \theta$ 이 되며, $dx = a \sec^2 \theta d\theta$ 이다.

4. 다음 부정적분을 구하면? or 정적분 값을 계산하면?

$$(1) \int \sqrt{1-x^2} \ dx$$

(2)
$$\int_{-2}^{2} \sqrt{4 - x^2} \, dx$$

$$(3) \int \frac{1}{\sqrt{x^2 - 16}} dx$$

(4)
$$\int_{\sqrt{2}}^{2} \frac{dx}{\sqrt{x^2-1}}$$

$$(5) \int \frac{1}{\sqrt{x^2 + 4}} dx$$

(6)
$$\int_{1}^{\sqrt{3}} \frac{1}{\sqrt{1+x^2}} dx$$

4) 유리함수 적분

분모가 인수분해 될 때는 부분분수로 고쳐서 적분한다. 부분분의 대표적인 상황은 다음과 같다.

②
$$\frac{D}{(x+a)(x+b)^2} = \frac{\alpha}{(x+a)} + \frac{\beta}{(x+b)} + \frac{\gamma}{(x+b)^2}$$

③
$$\frac{D}{(x+a)(x^2+b)} = \frac{\alpha}{x+a} + \frac{\beta x + \gamma}{x^2+b}$$
 (단, $\alpha, \beta, \gamma \in R$, D 는 2차 이하인 다항식)

5. 다음 부정적분을 구하면? or 정적분 값을 계산하면?

(1)
$$\int \frac{x}{x^2 + 3x + 2} dx$$

$$(2) \int \frac{x+3}{x^2-1} dx$$

(3)
$$\int \frac{x^2 + x + 3}{x(x+1)^2} dx$$

(4)
$$\int \frac{4x}{(x-1)(x+1)^2} dx$$

(5)
$$\int \frac{x^2 + 5x + 2}{(x+1)(x^2+1)} \, dx$$

(6)
$$\int \frac{4x^2 + x + 1}{(x+1)(x^2+1)} dx$$

1 다음의 부정적분 또는 정적분을 구하면?

(1)
$$\int \left(\sqrt{x} + \frac{1}{x}\right) dx$$

$$(2) \int \frac{\sin^2 x}{1 - \cos x} dx$$

$$(3) \int \frac{1+2\cos^2 x}{\cos^2 x} \, dx$$

$$(4) \int \tan^2 x dx$$

(5)
$$\int_{1}^{3} (x^3 - 4x^2 + 3x) dx$$

(6)
$$\int_{0}^{1} (2-x)(x-x^{3})dx$$

$$(7) \int_0^4 (x+2) \cdot \frac{1}{\sqrt{x}} dx$$

$$(8) \int \left(x + \frac{1}{x}\right)^2 dx$$

(9)
$$\int \left(\frac{2}{x^{\frac{3}{4}}} - \frac{3}{x^{\frac{2}{3}}}\right) dx$$

$$(10) \int \left(2x\sqrt{x} - \frac{1}{\sqrt{x}}\right) dx$$

(11)
$$\int_{0}^{2\pi} (3 + 2\sin x)^{2} dx$$

(12)
$$\int_{0}^{2\pi} (2 - \cos 2x)^{2} dx$$

2 다음의 부정적분 또는 정적분을 구하면?

(1)
$$\int_{1}^{e} \frac{1}{x(1+\log x)^2} dx$$

$$(2) \int \frac{\sin \pi \sqrt{x}}{\sqrt{x}} dx$$

$$(3) \int \frac{(\ln x)^3}{x} dx$$

$$(4) \int x \sqrt{x^2 + 1} \, dx$$

(5)
$$\int_{0}^{1} x \sqrt{9x^2 + 4} dx$$

(6)
$$\int x \sqrt{20 - 3x^2} dx$$

(7)
$$\int_{1}^{\sqrt{6}} \sqrt{x^4 + 3x^2} dx$$

(8)
$$\int_{0}^{1} xe^{1-x^{2}} dx$$

$$(9) \int_{e}^{e^2} \frac{\log(\log x)}{x} \, dx$$

$$(10) \int \tan^5 x \sec x dx$$

$$(11) \int_0^{\frac{\pi}{2}} \cos^3 x \sin 2x dx$$

(12)
$$\int_{0}^{\frac{\pi}{8}} (\sin^5 2x \cos^2 x - \sin^5 2x \sin^2 x) dx$$

3 다음의 부정적분 또는 정적분을 구하면?

$$(1) \int_{1}^{e} x \ln x \, dx$$

$$(2) \int x^2 e^{-x} dx$$

(3)
$$\int_{0}^{\frac{\pi}{12}} x \sec^2 3x \ dx$$

(4)
$$\int_{1}^{e} x^{3} (\ln x)^{2} dx$$

(5)
$$\int x^2 \sin 2x \, dx$$

$$(6) \int x^2 e^{2x} dx$$

(7)
$$\int_{0}^{2\pi} (x^2+1)\sin x dx$$

(8)
$$\int_{\frac{3}{2}\pi}^{2\pi} (x-\pi)\cos x \, dx$$

$$(9) \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin^2 x \cos x \ln(\sin x) dx$$

$$(10) \int e^x \sin 2x \, dx$$

4 다음의 부정적분 또는 정적분을 구하면?

$$(1) \int \frac{1}{\sqrt{x^2 - 4}} dx$$

(2)
$$\int \frac{1}{r^2 \sqrt{r^2 - 4}} dx$$

(3)
$$\int_{0}^{1} \sqrt{1-x^2} dx$$

(4)
$$\int_0^4 \sqrt{16-x^2} \, dx$$

5 다음의 부정적분 또는 정적분을 구하면?

(1)
$$\int \frac{1}{x^2 + 7x + 6} \, dx$$

(2)
$$\int_{3}^{7} \frac{1}{(x+1)(x-2)} dx$$

$$(3) \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \sin^3 x} dx$$

$$(4) \int \frac{x-1}{x(x+1)^2} \, dx$$

(5)
$$\int_0^1 \frac{x^2 + 3x}{(x+1)^2(x+2)} dx$$

(6)
$$\int_{1}^{\sqrt{2}} \frac{x^2 + 2x + 4}{x^3 + x^2} \, dx$$

편미분 및 중적분

1 편미분

다변수함수에 대하여, 그 중 하나의 변수에 주목하고 나머지 변수를 상수로 고정시켜 놓고 그 변수로 미분하는 일을 편미분 (Partial differentiation)이라 정의한다.

예를 들면 2변수 x와 y의 함수 f(x,y)가 있을 때 y를 상수로 보고 이것을 x로 미분하는 일을 이 함수를 x로 편미분한다고 한다. 또, x를 상수로 보고 이것을 y로 미분하는 일을 이 함수를 y로 편미분한다고 한다.

z = f(x,y)일 때, 각각 변수에 대한 편미분의 기호는 다음과 같이 표기한다.

① x로 편미분 기호 : $\frac{\partial z}{\partial x} = z_x = \frac{\partial f}{\partial x} = f_x = f_x(x,y)$

② y로 편미분 기호 : $\frac{\partial z}{\partial y} = z_y = \frac{\partial f}{\partial y} = f_y = f_y(x,y)$

1. 이변수 함수 f(x,y)의 편미분 f_x , f_y 의 값을 구하면?

(1)
$$f(x,y) = x^2y + xy^4$$

$$(2) f(x,y) = \frac{x}{x+2y}$$

(3)
$$f(x,y) = \frac{x-y}{x+y}$$

(4)
$$f(x,y) = \cos(x^3y^2)$$

2. 다음 물음에 답하여라.

(1)
$$f(x,y) = \ln(x^2 + xy + y^2)$$
 일 때, $f_x(-1,4) + f_y(-1,4)$ 의 값은?

(2)
$$f(x,y) = \ln(x + \sqrt{x^2 + y^2})$$
일 때, $\frac{\partial f}{\partial x}(3,4)$ 의 값은?

$$(3) \ f(x,y) = y \cos{(xy)} \ \ \, \text{e.t.}, \ \ \frac{\partial f}{\partial y} \Big(\pi,\frac{1}{2}\Big) \ \ \, \text{e.f.}$$

$$(6) \ f(r,\theta) = r^2 - \tan\theta \ Q \ \text{때}, \ \frac{\partial f}{\partial r} \bigg(\frac{1}{2}, 0\bigg) + \frac{\partial f}{\partial \theta} \bigg(\frac{1}{2}, 0\bigg) 의 \ \ 값은?$$

3. 다음 물음에 답하여라.

$$(1) \ z = e^x \cos \left(x - y \right)$$
일 때, $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}$ 을 간단히 하면?

$$(2) \quad z = \frac{x^2}{y} - \frac{y^2}{x} \, \text{일 때, } x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} \, \text{을 간단히 하면?}$$

4. 다음 물음에 답하여라.

$$(1) \ f(x,y,z) = x^2 - y^2 + xyz 일 \ \text{때,} \ \ \text{점} \ \ (1,1,2) 에서 \ \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} 의 \ \ 값은?$$

$$(2) \ \ f(x,y,z) = e^{x^2y} + \cos\left(y-2z\right)$$
에서 $f_x\bigg(1,0,\frac{\pi}{4}\bigg) + f_y\bigg(1,0,\frac{\pi}{4}\bigg)$ 의 값은?

5. 다음 물음에 답하여라.

$$(1) \ u = e^{3x} + e^{3y} + e^{3z} 에서 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} 흘 구하면?$$

$$(2) \ g(x,y,z) = \sqrt{x^2 + y^2 + z^2} \ \text{에서} \ x \frac{\partial g}{\partial x} + y \frac{\partial g}{\partial y} + z \frac{\partial g}{\partial z} \, 흘 \ 구하면?$$

$$\begin{array}{l} \blacksquare & \text{1. (1)} \quad f_x = 2xy + y^4, \quad f_y = x^2 + 4xy^3 \quad \text{(2)} \quad \frac{\partial f}{\partial x} = \frac{2y}{(x+2y)^2}, \quad \frac{\partial f}{\partial y} = \frac{-2x}{(x+2y)^2} \quad \text{(3)} \quad \frac{\partial f}{\partial x} = \frac{2y}{(x+y)^2}, \quad \frac{\partial f}{\partial y} = \frac{-2x}{(x+y)^2} \\ \text{(4)} \quad f_x = -3x^2y^2\sin(x^3y^2), \quad f_y = -2x^3y\sin(x^3y^2) \\ \text{2. (1)} \quad \frac{9}{13} \quad \text{(2)} \quad \frac{1}{5} \quad \text{(3)} \quad -\frac{\pi}{2} \quad \text{(4)} \quad -\pi \quad \text{(5)} \quad \text{(6)} \quad \text{(0)} \quad \text{3. (1)} \quad z \quad \text{(2)} \quad z \\ \text{4. (1)} \quad 5 \quad \text{(2)} \quad 0 \quad 5. \quad \text{(1)} \quad 3u \quad \text{(2)} \quad g(x,y,z) \end{array}$$

2 중적분

다변수함수의 적분으로 중복적분이라고도 한다. 예를 들어 함수 f(x,y)의 2중적분(2변수에 관한 중적분) 일 때, 변수 x또는 y에 관하여 먼저 적분하고 그 후에 y또는 x에 관하여 적분하는 것을 말한다. f(x,y)에 대하여 편미분과 마찬가지로 x로 적분할 때는 나머지 변수 y는 상수로 고정시켜 놓고 x만을 변수로 바라보고 적분을 계산한다. 반대로 f(x,y)에서 y로 적분할 때는 나머지 변수 x는 상수로 고정시켜 놓고 x만 고정시켜 놓고 y만을 변수로 바라보고 적분을 계산한다.

예제

1. 다음의 중적분 값을 계산하면?

$$(1) \int_0^1 \int_0^x x dy dx$$

$$(2) \int_0^1 \int_{x^3}^{\sqrt{x}} x dy dx$$

$$(3) \int_0^1 \int_{x^2}^x dy dx$$

(4)
$$\int_{0}^{2} \int_{2x^{2}-2}^{x^{2}+x} x dy dx$$

(5)
$$\int_0^1 \int_0^x (x^2 + y^2) dy dx$$

(6)
$$\int_{2}^{4} \int_{\frac{1}{2}x}^{\sqrt{x}} xy dy dx$$

(7)
$$\int_{0}^{2\pi} \int_{0}^{2} \frac{r}{1+r^{2}} dr d\theta$$

(8)
$$\int_{0}^{2\pi} \int_{0}^{1+\cos\theta} r^2 \sin\theta dr d\theta$$

(9)
$$\int_{1}^{2} \int_{0}^{\ln y} e^{-x} dx dy$$

(10)
$$\int_{0}^{2} \int_{0}^{\sqrt{y}} x e^{y^{2}} dx dy$$

$$(11) \int_0^{\pi} \int_0^x x \cos y \, dy dx$$

(12)
$$\int_{0}^{2\pi} \int_{1}^{2} 2r \ln r dr d\theta$$

2. 다음의 삼중적분 값을 계산하면?

(1)
$$\int_{0}^{\ln 3} \int_{0}^{1} \int_{0}^{y} (z^2 + 1) e^{y^2} dx dz dy$$

(2)
$$\int_{0}^{1} \int_{0}^{x} \int_{1}^{x} \frac{-\sin x}{z^{2}} dz dy dx$$

1. (1)
$$\frac{1}{3}$$
 (2) $\frac{1}{5}$ (3) $\frac{1}{6}$ (4) $\frac{8}{3}$ (5) $\frac{1}{3}$ (6) $\frac{11}{6}$ (7) $\pi \ln 5$ (8) 0 (9) $1 - \ln 2$ (10) $\frac{1}{4}(e^4 - 1)$ (11) π (12) $2\pi \left(4 \ln 2 - \frac{3}{2}\right)$ 2. (1) $\frac{2}{3}(e^{(\ln 3)^2} - 1)$ (2) $1 - \sin 1$

$oxed{1}$ 이변수 함수 f(x,y)의 편미분 f_x , f_y 의 값을 구하면?

(1)
$$f(x,y) = x^2 + 4xy + 2y$$

(2)
$$f(x,y) = (2x+3y)^{10}$$

(3)
$$f(x,y) = x^2 \sin(xy^2)$$

(4)
$$f(x,y) = x e^y - \sin(\frac{x}{y}) + x^3 y^2$$

2 다음 물음에 답하여라.

$$(1) \ f(x,y) = \ln x + y \ln x + x + y 일 \ \text{때},$$

$$f_x(1,1) + f_y(1,1) \ \text{의 값은} ?$$

(2)
$$f(u,v) = u \ln(v^2 - u^2)$$
일 때,
$$\frac{\partial f}{\partial u}(1,\sqrt{2}) + \frac{\partial f}{\partial v}(1,\sqrt{2})$$
의 값은?

3 다음 물음에 답하여라.

$$(1) \ u = \frac{e^x e^y}{e^x + e^y} 일 \ \text{때}, \ u_x + u_y 을 간단히 하면?}$$

$$\begin{split} (2) \ f(x,y,z) &= \frac{x+y}{y+z} \, \\ \supseteq \ \text{때}, \\ \\ \text{점} \ (1,1,1) \, \\ \text{에서} \ \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \, \\ \ \\ \text{ 값은?} \end{split}$$

4 다음의 이중적분 값을 계산하면?

(1)
$$\int_{0}^{1} \int_{0}^{1} (1-xy) dy dx$$

(2)
$$\int_{0}^{1} \int_{x^{2}}^{x} y \, dy dx$$

(3)
$$\int_{-2}^{1} \int_{0}^{\sqrt{4-y^2}} xy^2 dx dy$$

(4)
$$\int_{0}^{2} \int_{2y}^{3y} \frac{1}{x-y} dx dy$$

(5)
$$\int_{1}^{5} \int_{1}^{4} u^2 - v^2 dv du$$

(6)
$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{\cos \theta} r \sin \theta dr d\theta$$

(7)
$$\int_{0}^{\pi} \int_{0}^{1} 2e^{r^{2}} r dr d\theta$$

(8)
$$\int_{0}^{\ln 3} \int_{0}^{\ln 2} e^{-x-y} dy dx$$

5 다음의 삼중적분 값을 계산하면?

(1)
$$\int_0^1 \int_0^{y^2} \int_0^{1+y^3} \frac{1}{\sqrt{z}} dz dx dy$$

(2)
$$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} dz \, dy \, dx$$

Memo	

단원별 연습문제 정답 및 해설

PART I ~ PART II

CHPATER 01 ~ CHPATER 07

단원별 연습문제 정답 및 해설

CHAPTER 01 수와 식 CHAPTER 02 방정식과 함수 CHAPTER 03 도형의 방정식과 부등식

CHAPTER 01 단원별 연습문제 해설

1.

$$\begin{aligned} &(1) \ \left(-2 x^2 y^4\right)^3 \div 6 x^5 y^2 = \left(-8 x^6 y^{12}\right) \div 6 x^5 y^2 \\ &= \frac{-8 x^6 y^{12}}{6 x^5 y^2} = -\frac{4}{3} x y^{10} \end{aligned}$$

(2)
$$(x^2y^3)^4 \div (x^4y^3)^2 \times \left(\frac{x}{y^3}\right)^3$$

= $x^8y^{12} \div x^8y^6 \times \frac{x^3}{y^9} = \frac{x^{11}y^{12}}{x^8y^{15}} = \frac{x^3}{y^3}$

(3)
$$(3x^2y^3)^2 \times (2x^5y^3)^3 \div (x^4y)^6$$

= $9x^4y^6 \times 8x^{15}y^9 \div x^{24}y^6 = \frac{72x^{19}y^{15}}{x^{24}y^6} = \frac{72y^9}{x^5}$

(4)
$$(3x^2y)^2 \times \left(\frac{1}{3}x^2y\right)^2 \div (x^2y)^4$$

= $9x^4y^2 \times \frac{1}{9}x^4y^2 \div (x^8y^4) = \frac{x^8y^4}{x^8y^4} = 1$

2

(1)
$$a^3 \times a^4 \div a^9 = a^3 \times a^4 \times a^{-9}$$

= $a^{3+4-9} = a^{-2} = \frac{1}{a^2}$

(2)
$$a^{-2} \times (a^{-3})^2 = a^{-2} \times a^{-6} = a^{-8} = \frac{1}{a^8}$$

(3)
$$(a^{-4})^2 \times (a^{-5})^{-3} \div a^{-5} = a^{-8} \times a^{15} \div a^{-5}$$

= $a^{(-8)+15-(-5)} = a^{12}$

(4)
$$(8x^2 - 4xy) \div \frac{1}{2}x = (8x^2 - 4xy) \times \frac{2}{x}$$

= $8x^2 \times \frac{2}{x} - 4xy \times \frac{2}{x} = 16x - 8y$

2

(1)
$$\sqrt{(-2)^2} + \sqrt[3]{(-2)^3} + \sqrt[4]{(-2)^4} + \sqrt[5]{(-2)^5}$$

= 2-2+2-2=0

(2)
$$\sqrt[3]{54} + \sqrt[3]{16} - \sqrt[3]{2}$$

= $\sqrt[3]{3} \times 2 + \sqrt[3]{2} \times 2 - \sqrt[3]{2}$
= $3\sqrt[3]{2} + 2\sqrt[3]{2} - \sqrt[3]{2} = 4\sqrt[3]{2}$

4

(1)
$$3^{\frac{1}{3}} \times 3^{\frac{1}{6}} = 3^{\frac{1}{3} + \frac{1}{6}} = 3^{\frac{1}{2}} = \sqrt{3}$$

(2)
$$2^{\frac{1}{4}} \div 2^{-\frac{3}{4}} = 2^{\frac{1}{4} - \left(-\frac{3}{4}\right)} = 2^1 = 2$$

(3)
$$\left(\frac{4}{9}\right)^{-\frac{1}{2}} = \left\{ \left(\frac{2}{3}\right)^2 \right\}^{-\frac{1}{2}} = \left(\frac{2}{3}\right)^{-1} = \frac{3}{2}$$

(4)
$$\left(2^{\frac{1}{2}} \times 3^{\frac{1}{3}}\right)^6 = 2^3 \times 3^2 = 72$$

(5)
$$\left\{ \left(\frac{16}{81} \right)^{\frac{3}{4}} \right\}^{-\frac{1}{3}} = \left(\frac{16}{81} \right)^{\frac{3}{4} \cdot \left(-\frac{1}{3} \right)} = \left(\frac{16}{81} \right)^{-\frac{1}{4}}$$
$$= \left\{ \left(\frac{2}{3} \right)^{4} \right\}^{-\frac{1}{4}} = \left(\frac{2}{3} \right)^{-1} = \frac{3}{2}$$

(6)
$$8^5 \times \left(\frac{1}{16}\right)^2 \div 64 = \left(2^3\right)^5 \times \left(\frac{1}{2^4}\right)^2 \div 2^6$$

= $2^{15} \times \frac{1}{2^8} \times \frac{1}{2^6} = 2$

5

$$\frac{3^{x} - 3^{-x}}{3^{x} + 3^{-x}} = \frac{3^{x} (3^{x} - 3^{-x})}{3^{x} (3^{x} + 3^{-x})} = \frac{3^{2x} - 1}{3^{2x} + 1} = \frac{1}{3}$$

$$\Leftrightarrow$$
 $9^x + 1 = 3 \cdot 9^x - 3$

$$\Leftrightarrow 2 \cdot 9^x = 4$$

$$3^x = 2$$

$$\therefore 9^x - 9^{-x} = 9^x - (9^x)^{-1} = 2 - 2^{-1} = \frac{3}{2}$$

6

(1)
$$\left(\frac{1}{e^3}\right)^{-4x} = \left(e^{-3}\right)^{-4x} = e^{12x}$$

= $(e^{2x})^6 = 3^6 = 729$

$$(2)$$
 분자, 분모에 e^x 를 곱하면,

$$\frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{3 - 1}{3 + 1} = \frac{1}{2}$$

(3) 분자, 분모에
$$e^x$$
를 곱하면

$$\frac{e^{3x} - e^{-3x}}{e^x - e^{-x}} = \frac{e^{4x} - e^{-2x}}{e^{2x} - 1} = \frac{3^2 - \frac{1}{3}}{3 - 1} = \frac{13}{3}$$

7.

$$A - B = (7x^3 + 5x^2 - x - 1) - (-2x^3 + 4x^2 - 5x + 6)$$

= $9x^3 + x^2 + 4x - 7$

8.

(1)
$$x^3 + x^2 - 3x + 1$$

(2)
$$3x^3 - 5x^2 - x - 2$$

(3)
$$a^3 - 3a^2b - ab^2 + 6b^3$$

(4)
$$2x^3 - x^2 - 5x - 2$$

(5)
$$x^2 - 2x^2y - 2xy + 2xy^2 + y^2$$

(6)
$$4x^3 - 5x^2 - x + 2$$

(7)
$$x^3 - 3x^2y + xy^2 + y^3$$

(8)
$$x^4 - 3x^3 - 3x^2 - 6x - 10$$

9.

(1)
$$x^2 + 8xy + 16y^2$$

(2)
$$x^2 + 3xy + \frac{9}{4}y^2$$

(3)
$$9x^2 - 24x + 16$$

(4)
$$x^2 - 6xy + 9y^2$$

(5)
$$x^2 - y^2$$

(6)
$$4a^2 - 1$$

(7)
$$9a^2 - b^2$$

(8)
$$x^2 - 9x + 20$$

(9)
$$6x^2 + 5x + 1$$

(10)
$$6x^2 - 11x - 10$$

10

(1) 몫 :
$$4x^2 - 9x + 23$$
 나머지 : -40

$$(2)$$
 몫 : $-2x^2-6x-3$. 나머지 : -1

$$(3)$$
 몫 : $3x+6$, 나머지 : $-2x-10$

11.

(1)
$$x^2 + y^2 = (x + y)^2 - 2xy = 30$$

(2)
$$x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 45$$

12

(1)
$$\frac{x^3 - xy^2}{x^2 - 2xy + y^2} \div \frac{x^2 + xy}{x + y}$$
$$= \frac{x(x - y)(x + y)}{(x - y)^2} \div \frac{x(x + y)}{x + y}$$
$$= \frac{x(x - y)(x + y)}{(x - y)^2} \times \frac{1}{x} = \frac{x + y}{x - y}$$

(2)
$$\frac{x^2+x-6}{x^2-4x-5} \times \frac{x^2-3x-10}{x^2+2x-3}$$

$$= \frac{(x+3)(x-2)}{(x-5)(x+1)} \times \frac{(x-5)(x+2)}{(x+3)(x-1)}$$
$$= \frac{(x-2)(x+2)}{(x+1)(x-1)}$$

$$(3) \frac{x^2 + x - 2}{x^2 - 9} \div \frac{x^2 - 3x + 2}{x + 3} \times \frac{x - 2}{x^2 + 2x}$$

$$= \frac{(x + 2)(x - 1)}{(x - 3)(x + 3)} \div \frac{(x - 1)(x - 2)}{x + 3} \times \frac{x - 2}{x(x + 2)}$$

$$= \frac{(x + 2)(x - 1)}{(x - 3)(x + 3)} \times \frac{x + 3}{(x - 1)(x - 2)} \times \frac{x - 2}{x(x + 2)}$$

$$= \frac{1}{x(x - 3)}$$

13.

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1$$
의 양변에 abc 를 곱하면

$$ab + bc + ca = abc \circ \Box$$

이 때,
$$a+b+c=1$$
의 양변을 제곱하면

$$a^2 + b^2 + c^2 + 2(ab + bc + ca) = 1$$
이므로

$$\frac{3}{2} + 2(ab + bc + ca) = 1 \circ | \Box |.$$

따라서
$$ab+bc+ca=-\frac{1}{4}$$
이므로 $abc=-\frac{1}{4}$ 이다.

14.

(1)
$$\frac{1 + \frac{1}{a+1}}{1 - \frac{1}{a+1}} = \frac{\left(1 + \frac{1}{a+1}\right) \times (a+1)}{\left(1 - \frac{1}{a+1}\right) \times (a+1)}$$
$$= 1 - \frac{(a+1)+1}{(a+1)-1} = 1 - \frac{a+2}{a} = -\frac{2}{a}$$

(2)
$$\frac{\frac{x}{1+x} - \frac{1+x}{x}}{\frac{x}{1+x} - \frac{1-x}{x}} = \frac{\frac{x^2 - (1+x)^2}{(1+x)x}}{\frac{x^2 - (1-x)(1+x)}{(1+x)x}}$$
$$= \frac{x^2 - (x^2 + 2x + 1)}{x^2 - (1-x^2)} = \frac{-2x - 1}{2x^2 - 1}$$

$$(3) \frac{1}{1 - \frac{1}{1 + \frac{1}{x}}} + \frac{1}{1 - \frac{1}{1 - \frac{1}{x}}}$$

$$= \frac{1}{1 - \frac{x}{x+1}} + \frac{1}{1 - \frac{x}{x-1}}$$

$$= \frac{x+1}{x+1-x} + \frac{x-1}{x-1-x}$$

$$= x+1 - (x-1) = 2$$

15.

$$\frac{3}{x(x+3)} + \frac{4}{(x+3)(x+7)} + \frac{5}{(x+7)(x+12)}$$

$$= \left(\frac{1}{x} - \frac{1}{x+3}\right) + \left(\frac{1}{x+3} - \frac{1}{x+7}\right) + \left(\frac{1}{x+7} - \frac{1}{x+12}\right)$$

$$= \frac{1}{x} - \frac{1}{x+12} = \frac{12}{x(x+12)}$$

따라서 a=12, b=12이므로 a+b=24이다.

16

(1)
$$1+x>0$$
, $1-x>0$ 이므로
$$\sqrt{\frac{1+x}{1-x}} - \sqrt{\frac{1-x}{1+x}} = \frac{\sqrt{1+x}}{\sqrt{1-x}} - \frac{\sqrt{1-x}}{\sqrt{1+x}}$$
$$= \frac{1+x-(1-x)}{\sqrt{(1-x)(1+x)}} = \frac{2x}{\sqrt{1-x^2}}$$
$$= \frac{2 \cdot \frac{\sqrt{2}}{2}}{\sqrt{1-\left(\frac{\sqrt{2}}{2}\right)^2}} = \frac{\sqrt{2}}{\frac{1}{\sqrt{2}}} = 2$$

(2)
$$\frac{1}{1-\sqrt{x}} + \frac{1}{1+\sqrt{x}} = \frac{1+\sqrt{x}+1-\sqrt{x}}{(1-\sqrt{x})(1+\sqrt{x})}$$
$$= \frac{2}{1-x} = \frac{2}{1-\frac{\sqrt{3}}{2}} = \frac{4}{2-\sqrt{3}}$$

$$= 8 + 4\sqrt{3}$$

$$(3) \ x = \frac{1}{\sqrt{2} - 1} = \frac{\sqrt{2} + 1}{(\sqrt{2} - 1)(\sqrt{2} + 1)}$$

$$= \sqrt{2} + 1 \circ | \Box \Box \Box$$

$$\frac{\sqrt{x} - 1}{\sqrt{x} + 1} + \frac{\sqrt{x} + 1}{\sqrt{x} - 1} = \frac{(\sqrt{x} - 1)^2 + (\sqrt{x} + 1)^2}{(\sqrt{x} + 1)(\sqrt{x} - 1)}$$

$$= \frac{2(x + 1)}{x - 1} = \frac{2(\sqrt{2} + 2)}{\sqrt{2}} = \sqrt{2}(\sqrt{2} + 2)$$

$$= 2 + 2\sqrt{2} \circ | \Box |$$

17.

(1)
$$(x+y)(y-z)$$

(2)
$$(3x-1)^2$$

(3)
$$(a+5b)^2$$

$$(4) (3x-4y)^2$$

(5)
$$\left(x + \frac{1}{2}\right)^2$$

(6)
$$\left(x - \frac{1}{x}\right)^2$$

18.

(1)
$$(x-2)(x+2)$$

(2)
$$(x+4y)(x-4y)$$

(3)
$$(a+3b)(a-3b)$$

$$(4) (8x+3y)(8x-3y)$$

(5)
$$(x+1)(x+2)$$

(6)
$$(x-1)(x-7)$$

(7)
$$(x-3)(x-7)$$

(8)
$$(2x-3)(x+1)$$

(9)
$$(3a+7)(a-1)$$

(10)
$$(x-4u)(x+2u)$$

(10)
$$(x-4y)(x+2y)$$

(11)
$$(2x+3y)(x-y)$$

12)
$$(13a+5b)(a-b)$$

19.

(1)
$$(x-1)(x-2)(x-3)$$

(2)
$$(x-2)(x^2+x+3)$$

(3)
$$(2x-3)(x-1)(x+1)$$

$$(4) (x-3)(x-2)(2x+1)$$

CHAPTER 02 단원별 연습문제 해설

1.

- (1) $\alpha + \beta + \gamma = -4$
- (2) $\alpha\beta + \beta\gamma + \gamma\alpha = 3$
- (3) $\alpha\beta\gamma = 5$

2.

- (1) 2x-y=2일 때, y=x+1을 대입하면 2x-(x+1)=2 ⇔ x=3 이다. 즉. (x,y)=(3,4)
- (2) $\begin{cases} 3x-2y=5 \\ x+2y=-1 \end{cases}$ 일 때, 위와 아래를 더하면, $4x=4 \iff x=1$ 이다. 즉, (x,y)=(1,-1)
- (3) $\begin{cases} 4x 2y = 1 \\ 3x + y = -3 \end{cases} \Leftrightarrow \begin{cases} 4x 2y = 1 \\ 6x + 2y = -6 \end{cases}$ 일 때, 위와 아래를 더하면, $10x = -5 \Leftrightarrow x = -\frac{1}{2} \text{ 이다.}$
 - \vec{r} , $(x,y) = \left(-\frac{1}{2}, -\frac{3}{2}\right)$

3.

 $(1) \begin{cases} x+y-3z=2 & \cdots & \bigcirc \\ x-y-z=0 & \cdots & \bigcirc \\ -x+5y-z=2 & \cdots & \bigcirc \\ \bigcirc -\bigcirc : 2y-2z=2 \\ \bigcirc +\bigcirc : 6y-4z=4 \iff 3y-2z=2$

이다. 이 때, 위와 아래를 빼면 y = 0이다.

즉, (x, y, z) = (-1, 0, -1)

 $\bigcirc - \bigcirc : \ 3y - z = 2 \iff \ 9y - 3z = 6$

 $\bigcirc + \boxdot : 7y - 3z = 4$

이다. 이 때, 위와 아래를 빼면

 $2y = 2 \Leftrightarrow y = 1$ 이다.

Arr (x, y, z) = (2, 1, 1)

(3)
$$\begin{cases} x+y=5\\ y+z=6 \end{cases}$$
을 모두 더하면,
$$z+x=7$$

$$2(x+y+z) = 18 \Leftrightarrow x+y+z=9$$

이다. 따라서
$$x+y=5$$
이므로 $z=4$ 이다.
즉, $(x,y,z)=(3,2,4)$

4.

- $\begin{aligned} &(1) \ \begin{cases} 2x+y=3 \\ x^2+xy+y^2=3 \end{cases} & \stackrel{\text{QL}}{=} \text{ 때}, \\ &y=3-2x & \stackrel{\text{CL}}{=} x^2+xy+y^2=3 \text{ 에 대입하면,} \\ &x^2+x(3-2x)+(3-2x)^2=3 \\ &\Leftrightarrow x^2-3x+2=0 & \Leftrightarrow (x-1)(x-2)=0 \\ &\text{이다.} \end{aligned}$
- (2) $\begin{cases} x^2 2xy 3y^2 = 0 \\ x^2 + y^2 = 10 \end{cases}$ $\Leftrightarrow \begin{cases} (x+y)(x-3y) = 0 \\ x^2 + y^2 = 10 \end{cases} \quad \text{iff},$

즉. (x,y) = (1,1) 또는 (2,-1)

- i . y = -x을 $x^2 + y^2 = 10$ 에 대입하면, $x^2 + x^2 = 10 \quad \Leftrightarrow \quad x^2 = 5$ $\Leftrightarrow \quad x = \pm \sqrt{5} \quad \text{이다.}$ 따라서 $(x,y) = (\sqrt{5}, -\sqrt{5})$ 또는 $(-\sqrt{5}, \sqrt{5})$ 이다
- ii. x = 3y을 $x^2 + y^2 = 10$ 에 대입하면, $9y^2 + y^2 = 10 \Leftrightarrow y^2 = 1$ $\Leftrightarrow y = \pm 1 \text{ 이다.}$ 따라서 (x,y) = (3,1) 또는 (-3,-1)이다. 즉, $(x,y) = (\sqrt{5}, -\sqrt{5}), (-\sqrt{5}, \sqrt{5}), (3,1), (-3,-1)$
- (3) $\begin{cases} x^2 + xy 2y^2 = 0 \\ x^2 + y^2 = 2 \end{cases}$ $\Leftrightarrow \begin{cases} (x y)(x + 2y) = 0 \\ x^2 + y^2 = 2 \end{cases} \quad \text{and} \quad \text{$
 - i. y=x을 $x^2+y^2=2$ 에 대입하면, $x^2+x^2=2 \quad \Leftrightarrow \quad x^2=1 \quad \Leftrightarrow \quad x=\pm 1$ 이다.

따라서 (x,y)=(1,1) 또는 (-1,-1)이다.

ii. x=-2y을 $x^2+y^2=2$ 에 대입하면, $4y^2+y^2=2 \quad \Leftrightarrow \quad y^2=\frac{2}{5}$

 $\Leftrightarrow y = \pm \sqrt{\frac{2}{5}} = \pm \frac{\sqrt{10}}{5} \text{ oith.}$

따라서
$$(x,y) = \left(\frac{-2\sqrt{10}}{5}, \frac{\sqrt{10}}{5}\right)$$

또는
$$\left(\frac{2\sqrt{10}}{5}, -\frac{\sqrt{10}}{5}\right)$$
이다.
즉, $(x,y) = (1,1)$, $(-1,-1)$,
 $\left(\frac{-2\sqrt{10}}{5}, \frac{\sqrt{10}}{5}\right)$, $\left(\frac{2\sqrt{10}}{5}, -\frac{\sqrt{10}}{5}\right)$

- (1) x = 3y을 $x^2 2y = 11$ 에 대입하면, $9y^2 2y = 11 \Leftrightarrow 9y^2 2y 11 = 0$ $\Leftrightarrow (9y 11)(y + 1) = 0$ 이다. 즉, $(x, y) = \left(\frac{11}{3}, \frac{11}{9}\right)$ 또는 (-3, -1)
- (2) $\begin{cases} x+y=2 \\ xy=-8 \end{cases}$ 일 때, y=2-x을 xy=-8에 대입하면, $x(2-x)=-8 \iff x^2-2x-8=0 \\ \iff (x+2)(x-4)=0$ 이다. 즉. (x,y)=(-2,4) 또는 (4,-2)

6.

두 점 A(3, -2), B(5, 2)를 지나는 직선의 방정식은 $y-(-2)=\frac{2-(-2)}{5-3}(x-3) \iff y=2x-8$ 이다. 이 때, 이 직선이 점 (a, 4)를 지나므로 4=2a-8이므로 a=6이다. 즉, a=6

7.

x 축과 서로 다른 두 점에서 만나므로 이차방정식 $x^2-2ax+a^2-2a+6=0$ 의 판별식을 D 라고 하면 D>0이어야 한다. 따라서 $D=(-2a)^2-4(a^2-2a+6)>0 \Leftrightarrow 2a-6>0$ 이다. 즉, a>3

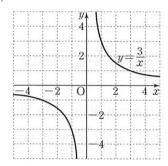
이차함수 $y = x^2 - 2ax + a^2 - 2a + 6$ 의 그래프가

8.

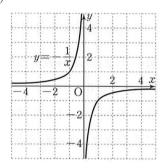
이차함수 $y=x^2-x+5$ 의 그래프와 직선 y=-3x+k가 만나지 않으므로 이차방정식 $x^2-x+5=-3x+k$ \Leftrightarrow $x^2+2x+5-k=0$ 의 판별식을 D라고 하면 D<0이어야 한다. 따라서 $D=2^2-4(5-k)<0 \Leftrightarrow k<4$ 이다. 즉, 정수의 k의 최댓값은 3이다.

9.

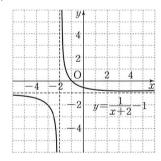
(1)



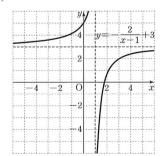
(2)



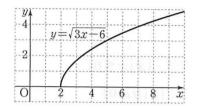
(3)



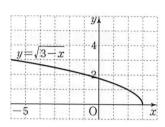
(4)



(1)



(2)



11.

(1)
$$\sin\theta + \cos\theta = \frac{1}{2}$$
의 양변을 제곱하면
$$\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta = \frac{1}{4}$$

$$\therefore \sin\theta\cos\theta = -\frac{3}{8}$$

(2)
$$\tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$$

 $\sin^2 \theta + \cos^2 \theta$ 8

$$=\frac{\sin^2\theta+\cos^2\theta}{\sin\theta\cos\theta}=-\frac{8}{3}$$

12.

$$\alpha$$
, β 는 예각이므로

$$\cos\alpha = \sqrt{1 - \sin^2\alpha} = \frac{3\sqrt{3}}{14},$$

$$\cos\beta = \sqrt{1 - \sin^2\beta} = \frac{5\sqrt{3}}{14}$$

이다

$$\therefore \sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$
$$= \frac{13}{14} \cdot \frac{5\sqrt{3}}{14} + \frac{3\sqrt{3}}{14} \cdot \frac{11}{14} = \frac{\sqrt{3}}{2}$$

$$\therefore \cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$= \frac{3\sqrt{3}}{14} \cdot \frac{5\sqrt{3}}{14} - \frac{13}{14} \cdot \frac{11}{14} = -\frac{1}{2}$$

$$\therefore \tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = -\sqrt{3}$$

$$\sin 120^{\circ} = \sin (90^{\circ} \times 1 + 30^{\circ}) = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$\cos 150^{\circ} = \cos (90^{\circ} \times 1 + 60^{\circ}) = -\sin 60^{\circ} = -\frac{\sqrt{3}}{2}$$

$$\sin 510^{\circ} = \sin (90^{\circ} \times 5 + 60^{\circ}) = \cos 60^{\circ} = \frac{1}{2}$$

$$\cos 480^{\circ} = \cos (90 \times 5 + 30^{\circ}) = -\sin 30^{\circ} = -\frac{1}{2}$$

$$\cdot \sin 120^{\circ} - \cos 150^{\circ} = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = -\frac{1}{2}$$

$$\therefore \frac{\sin 120^{\circ} - \cos 150^{\circ}}{\sin 510^{\circ} - \cos 480^{\circ}} = \frac{\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}}{\frac{1}{2} + \frac{1}{2}} = \sqrt{3}$$

14.

$$\sin(-120^{\circ}) = \sin\{90^{\circ} \times (-2) + 60^{\circ}\}\$$
$$= -\sin 60^{\circ} = -\frac{\sqrt{3}}{2}$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} = \frac{1+2}{1-1 \cdot 2} = -3$$

16.

(1)
$$\cos x = \frac{1}{3} \circ | \mathcal{C}|,$$

$$\sin^2 x = 1 - \cos^2 x = 1 - \frac{1}{9} = \frac{8}{9} \circ | \mathcal{C}|.$$

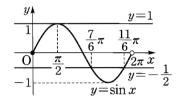
$$\stackrel{\sim}{=}_{7}, \cos 2x = \cos^2 x - \sin^2 x = \frac{1}{9} - \frac{8}{9} = -\frac{7}{9}$$

(2)
$$\tan 2x = \tan(x+x) = \frac{\tan x + \tan x}{1 - \tan x \tan x}$$

$$= \frac{2\tan x}{1 - \tan^2 x} = \frac{2 \cdot \frac{1}{2}}{1 - \frac{1}{4}} = \frac{4}{3}$$

$$2\cos^2 x + \sin x = 1$$
 에서 $2(1-\sin^2 x) + \sin x - 1 = 0$ $\Leftrightarrow 2\sin^2 x - \sin x - 1 = 0$ 이다. 이 때, $\sin x = t$ 로 놓으면, $0 \le x < 2\pi$ 에서 $-1 \le t \le 1$ 이다. 주어진 방정식은

 $2t^2-t-1=0 \Leftrightarrow (2t+1)(t-1)=0$ 이므로 $t=-\frac{1}{2} \text{ 또는 } t=1$ 이다.



- (i) $t = -\frac{1}{2}$, 즉 $\sin x = -\frac{1}{2}$ 일 때, $x = \frac{7}{6}\pi$ 또는 $x = \frac{11}{6}\pi$
- (ii) t=1, 즉 $\sin x=1$ 일 때, $x=\frac{\pi}{2}$ 즉, 구하는 모든 근의 합은 $\frac{7}{6}\pi + \frac{11}{6}\pi + \frac{\pi}{2} = \frac{7}{2}\pi$

18.

- (1) $\log_5 \frac{5}{4} + 2\log_5 \sqrt{20} = \log_5 \frac{5}{4} + \log_5 (\sqrt{20})^2$ = $\log_5 (\frac{5}{4} \times 20) = \log_5 25 = 2$
- (2) $\log_3 \sqrt{3} \log_3 3\sqrt{3}$ = $\log_3 \frac{\sqrt{3}}{3\sqrt{3}} = \log_3 3^{-1} = -1$
- (3) $\log_2 1 = \log_3 1 = \log_4 1 = 0$ 이므로 $\log_2 1 + \log_3 1 + \log_4 1 = 0 + 0 + 0 = 0$
- (4) $\log_2 \sqrt{2} + \frac{1}{2} \log_2 6 \frac{1}{4} \log_2 9$ $= \log_2 \sqrt{2} + \log_2 \sqrt{6} - \log_2 \sqrt{3}$ $= \log_2 \frac{\sqrt{2} \times \sqrt{6}}{\sqrt{3}} = \log_2 2 = 1$

CHAPTER 03 단원별 연습문제 해설

1.

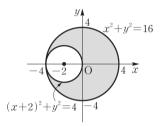
 $x^2 + y^2 - 4x + 2y + 1 = 0$ \Leftrightarrow $(x-2)^2 + (y+1)^2 = 4$ 이므로 중심좌표는 (2,-1)이며 반지름은 2이다

2

 $x^2+y^2-6x-4y-12 \le 0 \Leftrightarrow (x-3)^2+(y-2)^2 \le 25$ 이므로 반지름이 5인 원이다. 따라서 구하는 영역의 넓이는 $\pi \cdot 5^2 = 25\pi$ 이다.

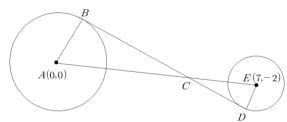
3

주어진 영역은 아래의 그림에서 어두운 부분과 같다.



반지름이 4인 원과 반지름이 2인 원 사이의 넓이는 $\pi \times 4^2 - \pi \times 2^2 = 12\pi$ 이다.

4.

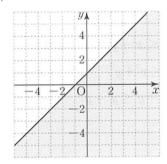


 $x^2+y^2=9$, $(x-7)^2+(y+2)^2=1$ 이므로 두 원의 중심을 A(0,0)과 B(7,-2)라 하면 $\overline{AB}=\sqrt{53}$ 이므로 $l_2^2+4^2=(\sqrt{53})^2$ 이다. 즉, l_2 의 길이는 $\sqrt{37}$ 이다.

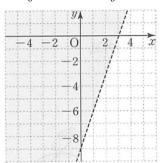
 $x^2+y^2=9$, $(x-7)^2+(y+2)^2=1$ 이므로 $\overline{AB}=\sqrt{53}$ 이다. 이 때, $l_1^2+2^2=\left(\sqrt{53}\right)^2$ 이므로 l_1 의 길이는 7이다. 즉, l_1 의 길이와 l_2 의 길이의 합은 $\sqrt{37}+7$ 이다.

5.

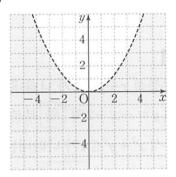
(1)



(2) $3x - y - 9 < 0 \iff y > 3x - 9$



(3)



CHAPTER 04 단원별 연습문제 해설

1.

- (1) 첫째항이 -7, 공차가 3이므로 $a_n = -7 + (n-1) \cdot 3 = 3n 10$ 이다.
- (2) 첫째항이 1, 공차가 $-\frac{3}{2}$ 이므로 $a_n=1+(n-1)\cdot\left(-\frac{3}{2}\right)=-\frac{3}{2}n+\frac{5}{2}$ 이다.

2

첫째항을 a, 공차를 d라 하면 $a_6 + a_{15} = (a + 5d) + (a + 14d) = 61$

 $\therefore 2a+19d=61 \quad \cdots \quad \bigcirc$ $a_8+a_{16}=(a+7d)+(a+15d)=70$

 $\therefore a+11d=35 \qquad \cdots$

 \bigcirc , \bigcirc 을 연립하여 풀면 a=2, d=3 이다.

 $\therefore a_{31} = a + 30d = 2 + 30 \cdot 3 = 92$

3.

 $x^3 - 3x^2 - 6x + k = 0$ 의 세 근을 각각 a - d, a, a + d라 하면 세 근의 합은 $(a - d) + a + (a + d) = 3 \Leftrightarrow \therefore a = 1$ 이다. 따라서 세 근 중 하나는 1이다. $x^3 - 3x^2 - 6x + k = 0$ 이 한 근이 1이므로 $f(x) = x^3 - 3x^2 - 6x + k$ 라 하면 f(1) = 1 - 3 - 6 + k = 0이므로 k = 8이다.

- $(1) \ \ \, 첫째항이 \ 4, \ \, 공비가 \ \, \frac{1}{2} \, 이므로$ $a_n=ar^{n-1}=2^2\cdot\left(\frac{1}{2}\right)^{n-1}=\left(\frac{1}{2}\right)^{n-3} \, 이다.$
- (2) 첫째항이 $\sqrt{2}$, 공비가 $-\frac{1}{\sqrt{2}}$ 이므로 $a_n = \sqrt{2} \cdot \left(-\frac{1}{\sqrt{2}}\right)^{n-1}$ $= (-1) \cdot \left(-\sqrt{2}\right) \cdot \left(-\frac{1}{\sqrt{2}}\right)^{n-1}$ $= -\left(-\frac{1}{\sqrt{2}}\right)^{n-2}$ 이다.

첫째항을 a 공비를 r라고 하면

$$a_2 + a_4 = 10$$
 $\Rightarrow ar + ar^3 = 10$

$$ar(1+r^2)=10$$

$$\therefore ar(1+r^2) = 10 \qquad \cdots \qquad (5)$$

$$a_4 + a_6 = 40$$
 $|A| ar^3 + ar^5 = 40$

$$\therefore ar^3(1+r^2)=40$$

①÷①을 하면 $r^2=4$ 이므로 r=2 $(\because r>0)$ 이다. 이것을 ①에 대입하면 $10a=10 \iff a=1$ 이다.

$$a_n = 1 \cdot 2^{n-1} = 2^{n-1}$$

$$\therefore S_n = \frac{1 \cdot (2^n - 1)}{2 - 1} = 2^n - 1$$

6.

(1)
$$1+3+5+7+9=\sum_{k=0}^{4}2k+1=\sum_{k=1}^{5}2k-1$$

(2)
$$n\left(\frac{1}{n^2+1^2}+\frac{2}{n^2+2^2}+\dots+\frac{n}{n^2+n^2}\right)=n\sum_{k=1}^n\frac{k}{n^2+k^2}$$

(3)
$$\frac{1}{2} + \frac{1}{2 \times 2^2} + \frac{1}{3 \times 2^3} + \dots + \frac{1}{n \times 2^n} = \sum_{k=1}^n \frac{1}{k 2^k}$$

7.

(1)
$$k=1, 2, 3, \dots, n$$
이므로

$$\sum_{k=1}^{n} k(k+2) = 1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + \dots + n(n+2)$$
 or:

(2)
$$i=3, 4, 5, 6, 7$$
이므로

$$\sum_{i=3}^{7} 3^{i} = 3^{3} + 3^{4} + 3^{5} + 3^{6} + 3^{7}$$
 or

(3) $k = 0, 1, 2, \dots, n$ 이므로

$$\sum_{k=0}^{n} \frac{(-1)^{k}}{2k+1} \left(\frac{1}{3}\right)^{k}$$

$$=1-\frac{1}{3}\times\frac{1}{3}+\frac{1}{5}\times\left(\frac{1}{3}\right)^2-\frac{1}{7}\times\left(\frac{1}{3}\right)^3+\cdots$$
 or:

 $(4) k = 1, 2, 3, \dots, n \circ] = \exists$

$$\sum_{k=1}^{n} \frac{4^{k}}{k} = 4 + \frac{4^{2}}{2} + \frac{4^{3}}{3} + \cdots \text{ or}.$$

(1)
$$\sum_{k=2}^{10} \frac{2}{(k-1)k} = 2 \sum_{k=2}^{10} \left(\frac{1}{k-1} - \frac{1}{k} \right)$$

$$= 2 \left\{ \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \dots + \left(\frac{1}{9} - \frac{1}{10} \right) \right\}$$

$$=2\left(1-\frac{1}{10}\right)=\frac{9}{5}$$

$$(2) \sum_{k=1}^{10} \frac{90}{(4k+1)(4k+5)}$$

$$= \frac{90}{4} \sum_{k=1}^{10} \left(\frac{1}{4k+1} - \frac{1}{4k+5} \right)$$

$$= \frac{90}{4} \left\{ \left(\frac{1}{5} - \frac{1}{9} \right) + \left(\frac{1}{9} - \frac{1}{13} \right) + \dots + \left(\frac{1}{41} - \frac{1}{45} \right) \right\}$$

$$= \frac{90}{4} \left(\frac{1}{5} - \frac{1}{45} \right) = 4$$

(3)
$$\sum_{k=1}^{20} \frac{1}{\sqrt{k-1} + \sqrt{k}}$$

$$= \sum_{k=1}^{20} \frac{\sqrt{k-1} - \sqrt{k}}{(\sqrt{k-1} + \sqrt{k})(\sqrt{k-1} - \sqrt{k})}$$

$$= \sum_{k=1}^{20} (\sqrt{k} - \sqrt{k-1})$$

$$= (1-0) + (\sqrt{2} - 1) + (\sqrt{3} - \sqrt{2})$$

$$+ \dots + (\sqrt{20} - \sqrt{19})$$

$$= \sqrt{20} = 2\sqrt{5}$$

$$(4) \sum_{k=2}^{n} \ln\left(1 - \frac{1}{k^2}\right) = \sum_{k=2}^{n} \ln\left(\frac{k^2 - 1}{k^2}\right)$$

$$= \sum_{k=2}^{n} \ln\frac{(k-1)(k+1)}{k^2}$$

$$= \sum_{k=2}^{n} \ln\frac{k-1}{k} + \ln\frac{k+1}{k}$$

$$= \left(\ln\frac{1}{2} + \ln\frac{3}{2}\right) + \left(\ln\frac{2}{3} + \ln\frac{4}{3}\right) + \left(\ln\frac{3}{4} + \ln\frac{5}{4}\right)$$

$$+ \dots + \left(\ln\frac{n-1}{n} + \ln\frac{n+1}{n}\right)$$

$$= \ln\frac{1}{2} + \ln\frac{3}{2} \times \frac{2}{3} + \ln\frac{4}{3} \times \frac{3}{4} + \ln\frac{5}{4} \times \frac{4}{5}$$

$$+ \dots + \ln\frac{n+1}{n}$$

$$= \ln\frac{1}{2} + \ln1 + \ln1 + \ln1 + \dots + \ln\frac{n+1}{n}$$

$$= \ln\frac{1}{2} + \ln\frac{n+1}{n} = \ln\frac{n+1}{2n}$$

단원별 연습문제 정답 및 해설

CHAPTER 05 함수와 미분 CHAPTER 06 부정적분 및 정적분 CHAPTER 07 편미분 및 중적분

CHAPTER 05 단원별 연습문제 해설

(1)
$$y' = \frac{1}{\sqrt{x}} + \frac{2}{x}$$

(2)
$$y' = 3\cos x + \sin x$$

(3)
$$y' = -\frac{2}{x^2} + \frac{1}{2}$$

(4)
$$y' = \frac{2x \cdot \sqrt{x} - (x^2 + 1) \cdot \frac{1}{2\sqrt{x}}}{(\sqrt{x})^2} = \frac{3x^2 - 1}{2x\sqrt{x}}$$

$$(5) y' = \frac{\sec^2 x \cdot x - \tan x}{x^2}$$

(6)
$$y' = \frac{\cos x (1 + \cos x) + \sin^2 x}{(1 + \cos x)^2}$$

= $\frac{\cos x + 1}{(1 + \cos x)^2} = \frac{1}{1 + \cos x}$

(7)
$$y' = 3(10x^2 - 4)^2$$
 $\cdot 20x = 60x(10x^2 - 4)^2$

(8)
$$y' = \frac{3}{2} (2x^2 + 5x)^{\frac{1}{2}} \cdot (4x + 5)$$

= $\frac{3}{2} (4x + 5) \sqrt{2x^2 + 5x}$

(9)
$$y' = 2\cos(2x)$$

$$(10) \ \ y' = \cos\sqrt{x} \cdot \ \frac{1}{2\sqrt{x}}$$

$$(11) \quad y' = \cos\left(1 - \frac{1}{x}\right) \cdot \quad \frac{1}{x^2}$$

(12)
$$u' = \cos(\sin x) \cdot \cos x$$

(13)
$$y' = \sec^2(2x^3 - 3x) \cdot (6x^2 - 3)$$

(14)
$$y' = 2\sin x \cos x = \sin 2x$$

(15)
$$y' = -3\cos^2 x \sin x$$

(16)
$$y' = 2\sec x \cdot \sec x \tan x = 2\sec^2 x \tan x$$

(17)
$$y' = \frac{1}{2\sqrt{4-x^2}}$$
 $(-2x) = \frac{-x}{\sqrt{4-x^2}}$

$$(18) \ \ y' = \frac{\cos x}{2\sqrt{\sin x}}$$

(19)
$$y' = \sqrt{1-x} - \frac{x}{2\sqrt{1-x}} = \frac{2-3x}{2\sqrt{1-x}}$$

(20)
$$y' = -2xe^{-x^2}$$

(21)
$$u' = \cos x e^{\sin x}$$

(22)
$$y' = \frac{2x}{x^2 - 4}$$

(23)
$$y = \ln\left(\frac{1}{\sin x}\right) = -\ln(\sin x)$$
,

$$y' = -\frac{\cos x}{\sin x} = -\cot x$$

(24)
$$y = \ln\left(\frac{x^2+4}{3x-5}\right) = \ln(x^2+4) - \ln(3x-5)$$
,

$$y' = \frac{2x}{x^2 + 4} - \frac{3}{3x - 5}$$

$$(25) \quad y = \ln\left(\frac{x^2}{x+1}\right)$$

$$= \ln x^2 - \ln(x+1) = 2\ln x - \ln(x+1)$$

$$y' = \frac{2}{x} - \frac{1}{x+1}$$

(26)
$$y' = 2\tan(3x) \cdot \sec^2(3x) \cdot 3 = 6\tan(3x)\sec^2(3x)$$

(27)
$$y' = 2\sin(2x+1) \cdot \cos(2x+1) \cdot 2 = 2\sin(4x+2)$$

(28)
$$y' = \sin(2x) + 2x\cos(2x)$$

(29)
$$y' = e^x \cos(2x) - 2e^x \sin(2x)$$

(30)
$$y' = e^{-x} - xe^{-x} - 6xe^{-3x^2}$$

(31)
$$y' = \frac{2xe^{2x} - e^{2x}}{x^2}$$

(32)
$$y' = \frac{2x^2\cos(2x) - 2x\sin(2x)}{x^4}$$

(33)
$$y' = \frac{2x \sec(2x) \tan(2x) - \sec(2x)}{x^2}$$

(34)
$$y' = \frac{e^{2x} \sec^2 x - 2e^{2x} \tan x}{e^{4x}} = \frac{e^{2x} \left(\sec^2 x - 2\tan x\right)}{e^{4x}}$$

$$=\frac{\sec^2 x - 2\tan x}{e^{2x}}$$

(35)
$$y' = \ln x + 1 + 2e^{2x} + \sin(2x) + 2x\cos(2x)$$

(36)
$$y' = \cos(\ln x) - x\sin(\ln x) \cdot \frac{1}{x}$$

$$=\cos\left(\ln x\right)-\sin\left(\ln x\right)$$

(37)
$$y' = e^{x \sin x} (\sin x + x \cos x) + \frac{\cos x}{\sin x}$$

$$= e^{x\sin x}(\sin x + x\cos x) + \cot x$$

(38)
$$y' = \frac{2\cos 2x}{\sin 2x} + \frac{2x\cos 2x - \sin 2x}{x^2}$$

= $2\cot 2x + \frac{2x\cos 2x - \sin 2x}{x^2}$

(39)
$$y' = e^{\sqrt{x}} + \frac{\sqrt{x}}{2}e^{\sqrt{x}} + \frac{\cos 2x}{\sqrt{\sin 2x}}$$

(40) $y' = -3\sin(\sin 3x)\cos 3x$

(41)
$$y' = \tan(\sqrt{x}) + \frac{1}{2} \sqrt{x} \sec^2(\sqrt{x}) + \tan(\frac{1}{x}) - \frac{1}{x} \sec^2(\frac{1}{x})$$

(42)
$$y' = \frac{2}{(x+1)^2} \sec^2\left(\frac{x-1}{x+1}\right)$$

(43)
$$y = x^{\sin x} = e^{\ln x^{\sin x}} = e^{\sin x \ln x},$$

 $y' = e^{\sin x \ln x} \left(\cos x \ln x + \sin x \cdot \frac{1}{x}\right)$
 $= x^{\sin x} \left(\cos x \ln x + \frac{\sin x}{x}\right)$

(44)
$$y = x^x = e^{\ln x^x} = e^{x \ln x}$$
,
 $y' = e^{x \ln x} \left(\ln x + x \cdot \frac{1}{x} \right) = x^x (\ln x + 1)$

$$f'(x) = x^3 - x^2 + ax + 2$$
이므로 $f'(2) = 2a + 6$ 이다.
 $f'(2) = 4$ 이므로 $2a + 6 = 4$ 이다.
∴ $a = -1$

$$f'(x) = 5(x^2+1)^4$$
 $2x = 10x(x^2+1)^4$
 $f'(1) = 10 \cdot 1 \cdot 2^4 = 160$

7.

$$f'(x) = \frac{-\sin x (e^x + 1) - \cos x \cdot e^x}{(e^x + 1)^2}$$

$$\therefore f'(0) = -\frac{1}{4}$$

$$f'(x) = \frac{\cos x \left(1 + e^x\right) - \sin x \cdot e^x}{\left(1 + e^x\right)^2},$$

$$\therefore f'(0) = \frac{1}{2}$$

6.

$$f'(x) = \frac{\sec x \tan x \cdot \tan x - (1 + \sec x)\sec^2 x}{\tan^2 x}$$

$$\therefore f'\left(\frac{\pi}{3}\right) = -2$$

$$f'(x) = 3x^2 \sin x + x^3 \cos x + 6x \cos x - 3x^2 \sin x$$

$$\therefore f'\left(\frac{\pi}{2}\right) = 0$$

$$f'(x) = 3\sin^2 x \cos x \cdot \cos 3x + \sin^3 x \cdot (-\sin 3x \cdot 3)$$

$$\therefore f'\left(\frac{\pi}{2}\right) = 3$$

$$\begin{split} h(x) &= x^{\sqrt{x}} = e^{\ln x^{\sqrt{x}}} = e^{\sqrt{x} \ln x} & \text{of } \\ h'(x) &= e^{\sqrt{x} \ln x} \left(\frac{1}{2\sqrt{x}} \ln x + \frac{\sqrt{x}}{x} \right) \\ &= x^{\sqrt{x}} \left(\frac{1}{2\sqrt{x}} \ln x + \frac{\sqrt{x}}{x} \right) \\ & \therefore h'(1) = 1 \end{split}$$

$$6x + 8y \frac{dy}{dx} = 0$$
 이므로 $\frac{dy}{dx} = -\frac{3x}{4y}$ 이다.

$$4y^3 \frac{dy}{dx} = 2y \frac{dy}{dx} - 2x$$
 \Leftrightarrow $(4y^3 - 2y) \frac{dy}{dx} = -2x$ 이므로 $\frac{dy}{dx} = -\frac{x}{2y^3 - y}$ 이다.

$$3x^{2} - \cos y \frac{dy}{dx} - 2xy - x^{2} \frac{dy}{dx} = 0$$

$$\Leftrightarrow (\cos y + x^{2}) \frac{dy}{dx} = 3x^{2} - 2xy$$

$$\therefore \frac{dy}{dx} = \frac{3x^{2} - 2xy}{\cos y + x^{2}}$$

따라서 점
$$(1,0)$$
 에서 $\frac{dy}{dx}$ 의 값은 $\frac{3}{2}$ 이다.

$$2x + y + x\frac{dy}{dx} + 2y\frac{dy}{dx} = 0$$

$$\Leftrightarrow (x+2y)\frac{dy}{dx} = -2x - y$$

$$\therefore \frac{dy}{dx} = \frac{-2x - y}{x + 2y}$$

따라서 점 $(0,\sqrt{3})$ 에서 $\frac{dy}{dx}$ 의 값은 $-\frac{1}{2}$ 이다.

14

$$3y^2 + 2x - 2\frac{dy}{dx} = 0$$

$$\therefore \frac{dy}{dx} = \frac{3y^2 + 2x}{2}$$

따라서 점 (2,0)에서 $\frac{dy}{dx}$ 의 값은 2이다.

15

(1)
$$y = \frac{(x-1)^2(x+1)}{(x+3)^3}$$
 일 때,

$$\ln y = \ln \frac{(x-1)^2(x+1)}{(x+3)^3}$$

$$= 2 {\ln (x-1)} + {\ln (x+1)} - 3 {\ln (x+3)} \circ | \ {\Box}.$$

따라서
$$\frac{1}{y}y' = \frac{2}{x-1} + \frac{1}{x+1} - \frac{3}{x+3}$$
 이므로

$$y' = \left(\frac{2}{x-1} + \frac{1}{x+1} - \frac{3}{x+3}\right) \frac{(x-1)^2(x+1)}{(x+3)^3}$$

(2)
$$y = \frac{x^3}{(x-3)(x+2)^2} \stackrel{\text{Ql}}{=} \mathbb{H},$$

$$\ln y = \ln \frac{x^3}{(x-3)(x+2)^2}$$

$$= 3\ln x - \ln(x-3) - 2\ln(x+2)$$

따라서
$$\frac{1}{y}y' = \frac{3}{x} - \frac{1}{x-3} - \frac{2}{x+2}$$
이므로

$$y' = \left(\frac{3}{x} - \frac{1}{x-3} - \frac{2}{x+2}\right) \frac{x^3}{(x-3)(x+2)^2}$$

CHAPTER 06 단원별 연습문제 해설

(1)
$$\int \left(\sqrt{x} + \frac{1}{x}\right) dx = \int \left(x^{\frac{1}{2}} + \frac{1}{x}\right) dx$$
$$= \frac{2}{3}x^{\frac{3}{2}} + \ln x + C$$

(2)
$$\int \frac{\sin^2 x}{1 - \cos x} dx = \int \frac{1 - \cos^2 x}{1 - \cos x} dx$$
$$= \int \frac{(1 - \cos x)(1 + \cos x)}{1 - \cos x} dx$$
$$= \int (1 + \cos x) dx = x + \sin x + C$$

(3)
$$\int \frac{1+2\cos^2 x}{\cos^2 x} \, dx = \int \frac{1}{\cos^2 x} + 2 \, dx$$
$$= \int \sec^2 x + 2 \, dx = \tan x + 2x + C$$

(4)
$$\int \tan^2 x dx = \int \sec^2 x - 1 dx$$
$$= \tan x - x + C$$

(5)
$$\int_{1}^{3} (x^{3} - 4x^{2} + 3x) dx$$
$$= \left[\frac{1}{4} x^{4} - \frac{4}{3} x^{3} + \frac{3}{2} x^{2} \right]_{1}^{3} = -\frac{8}{3}$$

(6)
$$\int_{0}^{1} (2-x)(x-x^{3}) dx$$
$$= \int_{0}^{1} (x^{4} - 2x^{3} - x^{2} + 2x) dx$$
$$= \left[\frac{1}{5}x^{5} - \frac{1}{2}x^{4} - \frac{1}{3}x^{3} + x^{2} \right]_{0}^{1} = \frac{11}{30}$$

(7)
$$\int_{0}^{4} (x+2) \cdot \frac{1}{\sqrt{x}} dx = \int_{0}^{4} \left(\sqrt{x} + \frac{2}{\sqrt{x}} \right) dx$$
$$= \left[\frac{2}{3} x^{\frac{3}{2}} + 4\sqrt{x} \right]_{0}^{4} = \left[\frac{2}{3} 4^{\frac{3}{2}} + 4\sqrt{4} \right]$$
$$= \frac{40}{2}$$

(8)
$$\int \left(x + \frac{1}{x}\right)^2 dx = \int x^2 + 2 + \frac{1}{x^2} dx$$
$$= \frac{1}{3}x^3 + 2x - \frac{1}{x} + C$$

(9)
$$\int \left(\frac{2}{x^{\frac{3}{4}}} - \frac{3}{x^{\frac{2}{3}}}\right) dx = 2 \int x^{-\frac{3}{4}} dx - 3 \int x^{-\frac{2}{3}} dx$$
$$= 2 \cdot 4x^{\frac{1}{4}} - 3 \cdot 3x^{\frac{1}{3}} + C$$
$$= 8x^{\frac{1}{4}} - 9x^{\frac{1}{3}} + C$$

(10)
$$\int \left(2x\sqrt{x} - \frac{1}{\sqrt{x}}\right) dx = 2\int x^{\frac{3}{2}} dx - \int x^{-\frac{1}{2}} dx$$
$$= 2 \cdot \frac{2}{5}x^{\frac{5}{2}} - 2x^{\frac{1}{2}} + C = \frac{4}{5}x^{\frac{5}{2}} - 2x^{\frac{1}{2}} + C$$

$$(12) \int_{0}^{2\pi} (2 - \cos 2x)^{2} dx$$

$$= \int_{0}^{2\pi} (4 - 4\cos 2x + \cos^{2} 2x) dx$$

$$= \int_{0}^{2\pi} \left[4 - 4\cos 2x + \frac{1 + \cos 4x}{2} \right] dx$$

$$= \left[4x - 2\sin 2x + \frac{1}{2} \left(x + \frac{1}{4} \sin 4x \right) \right]_{0}^{2\pi}$$

$$= \left[8\pi - 2 \cdot 0 + \frac{1}{2} (2\pi + \frac{1}{4} \cdot 0) \right] = 9\pi$$

(1)
$$\int_{1}^{e} \frac{1}{x(1+\log x)^{2}} dx$$
$$= \int_{1}^{2} \frac{1}{t^{2}} dt \quad (\because 1+\log x = t)$$
$$= \left[-\frac{1}{t} \right]_{1}^{2} = \frac{1}{2}$$

(2)
$$\int \frac{\sin \pi \sqrt{x}}{\sqrt{x}} dx = \int \frac{2}{\pi} \sin t dt \quad (\because \pi \sqrt{x} = t)$$
$$= -\frac{2}{\pi} \cos t + C = -\frac{2}{\pi} \cos \pi \sqrt{x} + C$$

(3)
$$\int \frac{(\ln x)^3}{x} dx = \int t^3 dt \ (\because \ln x = t)$$
$$= \frac{1}{4} t^4 + C = \frac{1}{4} (\ln x)^4 + C$$

(4)
$$\int x \sqrt{x^2 + 1} \, dx = \int t \cdot t \, dt \, \left(\because \sqrt{x^2 + 1} = t \right)$$
$$= \frac{1}{3} t^3 + C = \frac{1}{3} \left(\sqrt{x^2 + 1} \right)^3 + C$$

(5)
$$\int_{0}^{1} x \sqrt{9x^{2} + 4} dx$$
$$= \int_{2}^{\sqrt{13}} t \cdot \frac{1}{9} t dt \quad \left(\because \sqrt{9x^{2} + 4} = t \right)$$
$$= \frac{1}{9} \cdot \frac{1}{3} [t^{3}]_{2}^{\sqrt{13}} = \frac{1}{27} (13\sqrt{13} - 8)$$

(6)
$$\int x \sqrt{20 - 3x^2} \, dx$$
$$= -\frac{1}{3} \int t^2 dt \quad \left(\because \sqrt{20 - 3x^2} = t \right)$$
$$= -\frac{1}{9} t^3 + C$$
$$= -\frac{1}{9} \left(\sqrt{20 - 3x^2} \right)^3 + C$$

(7)
$$\int_{1}^{\sqrt{6}} \sqrt{x^4 + 3x^2} \, dx = \int_{1}^{\sqrt{6}} x \sqrt{x^2 + 3} \, dx$$
$$= \int_{2}^{3} t \cdot t \, dt \quad \left(\because \sqrt{x^2 + 3} = t \right)$$
$$= \frac{1}{3} \left[t^3 \right]_{2}^{3} = \frac{19}{3}$$

(8)
$$\int_{0}^{1} x e^{1-x^{2}} dx = -\frac{1}{2} \int_{1}^{0} e^{t} dt \quad (::1-x^{2} = t)$$
$$= \left[-\frac{1}{2} e^{t} \right]_{1}^{0} = \frac{1}{2} (e-1)$$

(9)
$$\int_{e}^{e^{2}} \frac{\log(\log x)}{x} dx = \int_{1}^{2} \log t dt \quad (\because \log x = t)$$
$$= [t \log t - t]_{1}^{2} = 2\log 2 - 1$$

(10)
$$\int \tan^5 x \sec x dx = \int \tan^4 x \cdot \tan x \cdot \sec x dx$$
$$= \int (\sec^2 x - 1)^2 \cdot \tan x \cdot \sec x dx$$
$$= \int (t^2 - 1)^2 dt \quad (\because \sec x = t)$$
$$= \int (t^4 - 2t^2 + 1) dt = \frac{1}{5} t^5 - \frac{2}{3} t^3 + t + C$$
$$= \frac{1}{5} \sec^5 x - \frac{2}{3} \sec^3 x + \sec x + C$$

(11)
$$\int_{0}^{\frac{\pi}{2}} \cos^{3}x \sin 2x dx = \int_{0}^{\frac{\pi}{2}} \cos^{3}x \cdot 2\sin x \cos x dx$$
$$= 2 \int_{0}^{\frac{\pi}{2}} \cos^{4}x \sin x dx$$
$$= 2 \int_{1}^{0} -t^{4} dt \quad (\because \cos x = t)$$
$$= -\frac{2}{5} \left[t^{5} \right]_{1}^{0} = \frac{2}{5}$$

$$(12) \int_{0}^{\frac{\pi}{8}} (\sin^{5}2x \cos^{2}x - \sin^{5}2x \sin^{2}x) dx$$

$$= \int_{0}^{\frac{\pi}{8}} \sin^{5}2x (\cos^{2}x - \sin^{2}x) dx$$

$$= \int_{0}^{\frac{\pi}{8}} \sin^{5}2x \cos 2x dx \quad (\because \cos 2x = \cos^{2}x - \sin^{2}x)$$

$$= \int_{0}^{\frac{1}{\sqrt{2}}} t^{5} \cdot \frac{1}{2} dt \quad (\because \sin 2x = t)$$

$$= \frac{1}{12} \left[t^{6} \right]_{0}^{\frac{1}{\sqrt{2}}} = \frac{1}{12} \frac{1}{8} = \frac{1}{96}$$

$$\begin{split} &(1) \int_{1}^{e} x \ln x \, dx \\ &= \left[\frac{1}{2} x^{2} \ln x \right]_{1}^{e} - \frac{1}{2} \int_{1}^{e} x \, dx \quad (\because 부분적분법) \\ &= \left[\frac{1}{2} x^{2} \ln x \right]_{1}^{e} - \left[\frac{1}{4} x^{2} \right]_{1}^{e} = \frac{1}{2} e^{2} - \frac{1}{4} e^{2} + \frac{1}{4} \\ &= \frac{1}{4} e^{2} + \frac{1}{4} \end{split}$$

(2)
$$\int x^2 e^{-x} dx$$

$$= -x^2 e^{-x} + 2 \int x e^{-x} dx \quad (\because 부분적분법)$$

$$= -x^2 e^{-x} + 2 \left[-x e^{-x} + \int e^{-x} dx \right] (\because 부분적분법)$$

$$= -x^2 e^{-x} - 2x e^{-x} - 2e^{-x} + C$$

$$\begin{aligned} &(4) \quad \int_{1}^{e} x^{3} (\ln x)^{2} dx \quad (\because \stackrel{\text{H-H-A}}{\to} \stackrel{\text{H-H}}{\to} \stackrel{\text{H-H}}{\to} \stackrel{\text{H-H}}{\to}) \\ &= \left[\frac{1}{4} x^{4} (\ln x)^{2} \right]_{1}^{e} - \int_{1}^{e} \frac{1}{4} x^{4} \cdot \left(2 \ln x \cdot \frac{1}{x} \right) dx \\ &= \frac{1}{4} e^{4} - \frac{1}{2} \int_{1}^{e} x^{3} \ln x dx \quad (\because \stackrel{\text{H-H-A}}{\to} \stackrel{\text{H-H}}{\to} \stackrel{\text{H-H}}{\to} \stackrel{\text{H-H}}{\to} \stackrel{\text{H-H}}{\to}) \\ &= \frac{1}{4} e^{4} - \frac{1}{2} \left[\frac{1}{4} [x^{4} \ln x]_{1}^{e} - \int_{1}^{e} \frac{1}{4} x^{4} \cdot \frac{1}{x} dx \right] \end{aligned}$$

$$\begin{split} &=\frac{1}{4}e^4 - \frac{1}{2}\bigg(\frac{1}{4}e^4 - \frac{1}{4}\int_{1}^{e}x^3dx\bigg) \\ &=\frac{1}{8}e^4 + \frac{1}{8}\cdot \ \frac{1}{4}[x^4]_{1}^{e} \\ &=\frac{1}{32}(5e^4 - 1) \end{split}$$

(6)
$$\int x^2 e^{2x} dx$$

$$= \frac{1}{2} x^2 e^{2x} - \int x e^{2x} dx \quad (\because 부분적분법)$$

$$= \frac{1}{2} x^2 e^{2x} - \left(\frac{1}{2} x e^{2x} - \frac{1}{2} \int e^{2x} dx\right) (\because 부분적분법)$$

$$= \frac{1}{2} x^2 e^{2x} - \frac{1}{2} x e^{2x} + \frac{1}{2} \left(\frac{1}{2} e^{2x}\right) + C$$

$$= \frac{1}{2} x^2 e^{2x} - \frac{1}{2} x e^{2x} + \frac{1}{4} e^{2x} + C$$

$$(7) \int_{0}^{2\pi} (x^{2}+1)\sin x dx$$

$$= [(x^{2}+1)(-\cos x)]_{0}^{2\pi} + \int_{0}^{2\pi} 2x\cos x dx$$

$$(\because 부분적분법)$$

$$= -(4\pi^{2}+1)+1+[2x(\sin x)]_{0}^{2\pi} - \int_{0}^{2\pi} 2\sin x dx$$

$$(\because 부분적분법)$$

$$= -4\pi^{2}+[2\cos x]_{0}^{2\pi} = -4\pi^{2}$$

(1) $\int \frac{1}{\sqrt{x^2-4}} dx$

$$= \int \frac{1}{2\tan t} \cdot 2 \operatorname{sect} \tan t \, dt \, \left(\because x = 2 \operatorname{sect} \right)$$

$$= \int \operatorname{sect} dt = \ln |\operatorname{sect} + \tan t| + C$$

$$= \ln \left| \frac{x}{2} + \frac{\sqrt{x^2 - 4}}{2} \right| + C$$

$$(2) \int \frac{1}{x^2 \sqrt{x^2 - 4}} \, dx$$

$$= \int \frac{1}{4 \operatorname{sec}^2 \theta \sqrt{4 \left(\operatorname{sec}^2 x - 1 \right)}} 2 \operatorname{sec} \theta \tan \theta \, d\theta$$

$$\left(\because x = 2 \operatorname{sec} \theta \right)$$

$$= \frac{1}{4} \int \frac{1}{\operatorname{sec} \theta} \, d\theta \quad \left(\because 1 + \tan^2 \theta = \operatorname{sec}^2 \theta \right)$$

$$= \frac{1}{4} \int \cos \theta \, d\theta = \frac{1}{4} \sin \theta + C$$

이 때,
$$x = 2\sec\theta \iff \sec\theta = \frac{x}{2}$$
 이므로 $\sin\theta = \frac{\sqrt{x^2 - 4}}{x}$ 이다.

$$\therefore \int \frac{1}{x^2 \sqrt{x^2 - 4}} dx = \frac{1}{4} \frac{\sqrt{x^2 - 4}}{x} + C$$
(3)
$$\int_0^1 \sqrt{1 - x^2} dx$$

$$= \int_0^{\frac{\pi}{2}} \sqrt{1 - \sin^2 t} \cdot \cot t \quad (\because x = \sin t)$$

$$= \int_0^{\frac{\pi}{2}} \cos^2 t dt = \frac{1}{2} \int_0^{\frac{\pi}{2}} (1 + \cos 2t) dt$$

$$= \frac{1}{2} \left[t + \frac{1}{2} \sin 2t \right]_0^{\frac{\pi}{2}} = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}$$
(4)
$$\int_0^4 \sqrt{16 - x^2} dx$$

$$= \int_0^{\frac{\pi}{2}} 4\cos\theta \cdot 4\cos\theta d\theta \quad (\because x = 4\sin\theta)$$

$$= 16 \int_0^{\frac{\pi}{2}} \cos^2\theta d\theta = 16 \times \frac{1}{2} \cdot \frac{\pi}{2} = 4\pi$$

5

$$= \int \left(\frac{1/5}{x+1} + \frac{-1/5}{x+6}\right) dx$$

$$= \frac{1}{5} \int \left(\frac{1}{x+1} - \frac{1}{x+6}\right) dx$$

$$= \frac{1}{5} (\ln|x+1| - \ln|x+6|) + C = \frac{1}{5} \ln\left|\frac{x+1}{x+6}\right| + C$$
(2)
$$\int_{3}^{7} \frac{1}{(x+1)(x-2)} dx$$

$$= -\frac{1}{3} \int_{3}^{7} \left(\frac{1}{x+1} - \frac{1}{x-2}\right) dx$$

$$= -\frac{1}{3} \left[\ln(x+1) - \ln(x-2)\right]_{3}^{7}$$

$$= -\frac{1}{3} \left[\ln\frac{x+1}{x-2}\right]_{3}^{7} = -\frac{1}{3} \left(\ln\frac{8}{5} - \ln4\right)$$

$$= -\frac{1}{3} \ln\frac{2}{5}$$

(1) $\int \frac{1}{x^2 + 7x + 6} dx = \int \frac{1}{(x+1)(x+6)} dx$

(3)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \sin^3 x} dx$$
$$= \int_{\frac{1}{2}}^{1} \frac{1}{t + t^3} dt \ (\because \sin x = t)$$
$$= \left[\ln t - \frac{1}{2} \ln (1 + t^2) \right]_{\frac{1}{2}}^{1}$$
$$= \frac{1}{2} \ln \frac{5}{2}$$

(4)
$$\int \frac{x-1}{x(x+1)^2} dx$$
$$= \int -\frac{1}{x} + \frac{1}{x+1} + \frac{2}{(x+1)^2} dx$$
$$= -\ln|x| + \ln|x+1| - \frac{2}{x+1} + C$$

(5)
$$\int_{0}^{1} \frac{x^{2} + 3x}{(x+1)^{2}(x+2)} dx$$
$$= \int_{0}^{1} \frac{-2}{x+2} + \frac{3}{x+1} + \frac{-2}{(x+1)^{2}} dx$$
$$= \left[-2\ln|x+2| + 3\ln|x+1| + \frac{2}{x+1} \right]_{0}^{1}$$
$$= -2\ln 3 + 3\ln 2 + 1 + 2\ln 2 - 2$$
$$= -1 + 5\ln 2 - 2\ln 3 = \ln \frac{32}{9} - 1$$

(6)
$$\int_{1}^{\sqrt{2}} \frac{x^{2} + 2x + 4}{x^{3} + x^{2}} dx$$

$$= \int_{1}^{\sqrt{2}} \left(\frac{3}{x+1} + \frac{-2x+4}{x^{2}} \right) dx$$

$$= \int_{1}^{\sqrt{2}} \left(\frac{3}{x+1} - \frac{2}{x} + \frac{4}{x^{2}} \right) dx$$

$$= \left[3\ln(x+1) - 2\ln x - \frac{4}{x} \right]_{1}^{\sqrt{2}}$$

$$= \left(3\ln(\sqrt{2} + 1) - 2\ln\sqrt{2} - \frac{4}{\sqrt{2}} \right) - (3\ln 2 - 4)$$

$$= 3\ln(\sqrt{2} + 1) - \ln 2 - 2\sqrt{2} - 3\ln 2 + 4$$

$$= \ln \frac{(\sqrt{2} + 1)^{3}}{16} + 4 - 2\sqrt{2}$$

CHAPTER 07 단원별 연습문제 해설

1.

(1)
$$f_x = 2x + 4y$$
, $f_y = 4x + 2$

(2)
$$f_x = 20(2x+3y)^9$$
, $f_y = 30(2x+3y)^9$

$$(3) \frac{\partial f}{\partial x} = 2x \sin(xy^2) + x^2 \cos(xy^2) \cdot y^2$$
$$= 2x \sin(xy^2) + x^2 y^2 \cos(xy^2),$$
$$\frac{\partial f}{\partial y} = x^2 \cos(xy^2) \cdot 2xy = 2x^3 y \cos(xy^2)$$

$$(4) \frac{\partial z}{\partial x} = e^y - \cos\left(\frac{x}{y}\right) \cdot \left(\frac{1}{y}\right) + 3x^2y^2,$$

$$\frac{\partial z}{\partial y} = xe^y - \cos\left(\frac{x}{y}\right) \cdot \left(-\frac{x}{y^2}\right) + 2x^3y$$

$$= xe^y + \frac{x}{y^2}\cos\left(\frac{x}{y}\right) + 2x^3y$$

2

(1)
$$f_x = \frac{1}{x} + \frac{y}{x} + 1$$
, $f_y = \ln x + 1$
 $\therefore f_x(1, 1) + f_y(1, 1) = 3 + 1 = 4$

$$(2) \frac{\partial f}{\partial u} = \ln(v^2 - u^2) + u \cdot \frac{-2u}{v^2 - u^2}$$

$$= \ln(v^2 - u^2) - \frac{2u^2}{v^2 - u^2},$$

$$\frac{\partial f}{\partial v} = u \cdot \frac{2v}{v^2 - u^2} = \frac{2uv}{v^2 - u^2}$$

$$\therefore \frac{\partial f}{\partial u}(1, \sqrt{2}) + \frac{\partial f}{\partial v}(1, \sqrt{2}) = -2 + 2\sqrt{2}$$

ર

$$(1) \quad u_x = \frac{e^x e^y (e^x + e^y) - e^x e^y \cdot e^x}{(e^x + e^y)^2} = \frac{e^x e^{2y}}{(e^x + e^y)^2}$$

$$u_y = \frac{e^x e^y (e^x + e^y) - e^x e^y e^y}{(e^x + e^y)^2} = \frac{e^{2x} e^y}{(e^x + e^y)^2}$$

$$\therefore \quad u_x + u_y = \frac{e^x e^{2y}}{(e^x + e^y)^2} + \frac{e^{2x} e^y}{(e^x + e^y)^2}$$

$$= \frac{e^x e^y (e^y + e^x)}{(e^x + e^y)^2} = \frac{e^x e^y}{e^x + e^y} = u$$

(2)
$$f_x = \frac{y+z}{(y+z)^2}$$
,
 $f_y = \frac{y+z-x-y}{(y+z)^2} = \frac{z-x}{(y+z)^2}$,

$$\begin{split} f_z &= \frac{-x-y}{(y+z)^2} \\ & \therefore f_x(1,1,1) \!+\! f_y(1,1,1) \!+\! f_z(1,1,1) \\ &= \frac{1}{2} \!+\! 0 \!-\! \frac{1}{2} \!=\! 0 \end{split}$$

$$(1) \int_{0}^{1} \int_{0}^{1} (1 - xy) dy dx$$

$$= \int_{0}^{1} \int_{0}^{1} (1 - xy) dy dx = \int_{0}^{1} \left[y - \frac{1}{2} x y^{2} \right]_{0}^{1} dx$$

$$= \int_{0}^{1} \left(1 - \frac{1}{2} x \right) dx = \left[x - \frac{1}{4} x^{2} \right]_{0}^{1} = \frac{3}{4}$$

(2)
$$\int_{0}^{1} \int_{x^{2}}^{x} y \, dy dx$$
$$= \int_{0}^{1} \frac{1}{2} [y^{2}]_{x^{2}}^{x} dx = \frac{1}{2} \int_{0}^{1} (x^{2} - x^{4}) \, dx$$
$$= \frac{1}{2} \left[\frac{1}{3} x^{3} - \frac{1}{5} x^{5} \right]_{0}^{1} = \frac{1}{15}$$

(3)
$$\int_{-2}^{1} \int_{0}^{\sqrt{4-y^{2}}} xy^{2} dx dy$$

$$= \int_{-2}^{1} y^{2} \left[\frac{1}{2} x^{2} \right]_{0}^{\sqrt{4-y^{2}}} dy = \int_{-2}^{1} \frac{y^{2}}{2} (4-y^{2}) dy$$

$$= \frac{1}{2} \int_{-2}^{1} (4y^{2} - y^{4}) dy$$

$$= \frac{1}{2} \left[\frac{4}{3} y^{3} - \frac{1}{5} y^{5} \right]_{-2}^{1} = \frac{27}{10}$$

(4)
$$\int_{0}^{2} \int_{2y}^{3y} \frac{1}{x-y} dx dy$$
$$= \int_{0}^{2} (\ln 2y - \ln y) dy = \int_{0}^{2} \ln 2 dy = 2 \ln 2$$

(5)
$$\int_{1}^{5} \int_{1}^{4} u^{2} - v^{2} dv du$$
$$= \int_{1}^{5} \left[u^{2}v - \frac{1}{3}v^{3} \right]_{1}^{4} du = \int_{1}^{5} (3u^{2} - 21) du$$
$$= \left[u^{3} - 21u \right]_{1}^{5} = 40$$

(6)
$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{\cos \theta} r \sin \theta dr d\theta$$
$$= \int_{0}^{\frac{\pi}{2}} \left[\frac{1}{2} r^{2} \sin \theta \right]_{0}^{\cos \theta} d\theta$$
$$= \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \cos^{2} \theta \sin \theta d\theta$$

$$= \frac{1}{2} \int_0^1 t^2 dt \quad (\because \cos \theta = t)$$
$$= \left[\frac{1}{6} t^3 \right]_0^1 = \frac{1}{6}$$

(7)
$$\int_{0}^{\pi} \int_{0}^{1} 2e^{r^{2}} r dr d\theta$$
$$= \int_{0}^{\pi} \left[e^{r^{2}} \right]_{0}^{1} d\theta = \int_{0}^{\pi} (e - 1) d\theta = (e - 1)\pi$$

(8)
$$\int_{0}^{\ln 3} \int_{0}^{\ln 2} e^{-x-y} dy dx$$

$$= \int_{0}^{\ln 3} \left[-e^{-x-y} \right]_{0}^{\ln 2} dx = \int_{0}^{\ln 3} -e^{-x-\ln 2} + e^{-x} dx$$

$$= \left[e^{-x-\ln 2} - e^{-x} \right]_{0}^{\ln 3}$$

$$= e^{-\ln 3 - \ln 2} - e^{-\ln 3} - e^{-\ln 2} + 1$$

$$= e^{-\ln 6} - e^{-\ln 3} - e^{-\ln 2} + 1$$

$$= \frac{1}{6} - \frac{1}{3} - \frac{1}{2} + 1 = \frac{1}{3}$$

$$(1) \int_{0}^{1} \int_{0}^{y^{2}} \int_{0}^{1+y^{3}} \frac{1}{\sqrt{z}} dz dx dy$$

$$= \int_{0}^{1} \int_{0}^{y^{2}} [2\sqrt{z}]_{0}^{1+y^{3}} dx dy$$

$$= 2 \int_{0}^{1} \int_{0}^{y^{2}} \sqrt{1+y^{3}} dx dy$$

$$= 2 \int_{0}^{1} \sqrt{1+y^{3}} \times y^{2} dy$$

$$= 2 \int_{1}^{\sqrt{2}} t \times \frac{2}{3} t dt \quad (\because \sqrt{1+y^{3}} = t)$$

$$= \frac{4}{9} (2\sqrt{2} - 1)$$

$$(2) \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} dz \, dy \, dx$$

$$= \int_{0}^{1} \int_{0}^{1-x} 1 - x - y \, dy \, dx$$

$$= \int_{0}^{1} \left[(1-x)y - \frac{1}{2}y^{2} \right]_{0}^{1-x} dx$$

$$= \int_{0}^{1} \frac{1}{2} (1-x)^{2} \, dx = \left[-\frac{1}{6} (1-x)^{3} \right]_{0}^{1}$$

$$= \frac{1}{6}$$